www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - ln von x?
ln von x? < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ln von x?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:06 Mi 21.10.2009
Autor: alex12456

Aufgabe
ich will die Fkt auflösen....
0.5= x*e^-x+e^-x       /ln
ln(0.5) = ? -x

so da nun meine frage wie mche ich ln von irgendwas mal [mm] e^x [/mm] ???

kann mir das jemand bitte erklären? danke

        
Bezug
ln von x?: Antwort
Status: (Antwort) fertig Status 
Datum: 10:20 Mi 21.10.2009
Autor: M.Rex

Hallo

Ganz so einfach geht das leider nicht.

Du hast:

[mm] \bruch{1}{2}=x*e^{-x}+e^{-x} [/mm]

Das kann man umschreiben zu:
[mm] \bruch{1}{2}=x*e^{-x}+e^{-x} [/mm]
[mm] \gdw \bruch{1}{2}=(x+1)*e^{-x} [/mm]

Jetzt gibt es aber keine Möglichkeit, das ganze nach x aufzulösen, du hast hier nur die Möglichkeit, die Lösung zu erraten, oder ein geeignetes Näherungsverfahren zu nutzen.

Woher kommt denn die Aufgabe? Gibt es evtl. noch weitere Informationen dazu?

Marius

Bezug
                
Bezug
ln von x?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:13 Mi 21.10.2009
Autor: alex12456

Aufgabe
die gehört zu einem größenernaufgabenkomplex einer abituraufgabe.....sollten wir lösen....also kann man solche aufgaben nur mit der solvefkt zum beispiel lösen?
und wie löst man dann das auf?
f´(x)= -10e^(-2x)+2e^(-0.5x )  =0    ???
10e^(-2x)=2e^(-0.5)
[mm] \bruch{10}{e^(2x)}= \bruch [/mm] {2}{e^(0.5x)}
[mm] 5=\bruch{ e^(2x)}{e^(0.5x)} [/mm]

so und wie gehts da weiter? wenn ich ln mache ist es logisch kommt raus
ln5 = 1.5x        und dan einfach durch 15
aber nehmen wir an ich möchte [mm] e^2/e^0.5x [/mm]      ´´kürzen" wie macht man das?

vielen dank für antwort.

Bezug
                        
Bezug
ln von x?: Antwort
Status: (Antwort) fertig Status 
Datum: 11:22 Mi 21.10.2009
Autor: fred97


> die gehört zu einem größenernaufgabenkomplex einer
> abituraufgabe.....sollten wir lösen....also kann man
> solche aufgaben nur mit der solvefkt zum beispiel lösen?
>  und wie löst man dann das auf?
>  f´(x)= -10e^-2x+2e^-0.5x   =0    ???
>   10e^-2x=2e^-0.5
>  [mm]10/e^2= 2/e^0.5x[/mm]
>  5= [mm]e^2x/e^0.5x[/mm]
>  
> so und wie gehts da weiter? wenn ich ln mache ist es
> logisch kommt raus
>  ln5 = 1.5x        und dan einfach durch 15

Wenn Du meinst, durch 1,5 teilen, so ligst Du richtig



>  aber nehmen wir an ich möchte [mm]e^2/e^0.5x[/mm]      


Meinst Du [mm] \bruch{e^2}{e^{0,5x}} [/mm]  ? Wenn ja, so verfahre nach der Regel

                    [mm] $\bruch{a^p}{a^q} [/mm] = [mm] a^{p-q}$ [/mm]



> ´´kürzen" wie macht man das?

"Aufgaben und Fragen in lesbarer Form posten" , wie macht man das ?

FRED



>  vielen dank für antwort.


Bezug
                        
Bezug
ln von x?: Antwort
Status: (Antwort) fertig Status 
Datum: 11:32 Mi 21.10.2009
Autor: M.Rex

Hallo

Alternativ geht das auch mit den Nullprodukt:

[mm] -10e^{-2x}+2e^{-0.5x}=0 [/mm]
[mm] \gdw 2e^{-0,5x}*(5e^{-1,5x}+1)=0 [/mm]
[mm] \Rightarrow 2e^{-0,5x}=0 \vee 5e^{-1,5x}+1=0 [/mm]

Marius

P.S.: Ich gebe Fred recht, versuche mal, deine Aufgaben etwas besser zu formulieren, das geht mit dem Formeleditor echt gut. Du kannst ja mal eine Formel von mir anklicken, dann bekommst du den Quelltext angezeigt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de