www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - lösbarkeit von Kongruenzen
lösbarkeit von Kongruenzen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lösbarkeit von Kongruenzen: Aufgaben
Status: (Frage) überfällig Status 
Datum: 17:29 Do 13.05.2010
Autor: Study1988

Aufgabe
Aufgabe 2:
Beweisen oder Widerlegen Sie:

1. Für alle a,b [mm] \in [/mm] \ IZ, m [mm] \in [/mm] [(Existiert ein [mm] x\in \IZ: [/mm] a * x [mm] \equiv [/mm] b (mod m) [mm] \gdw [/mm] ggT (a, m) | b]

2. Formulieren Sie die Aussage aus 1. in einem umgangssprachlichen Satz

3. Geben Sie je eine lösbare bzw. unlösbare lineare Kongruenz an.

4. Bestimmen Sie alle m [mm] \in \IN [/mm] für die linare Kongruenz 10 * x [mm] \equiv [/mm] 35 (mod m) lösbar ist

5. Berechnen Sie - im Falle der Lösbarkein von 4., mit einem von Ihnen gewählten m - eine konrkete Lösung x0 [mm] \in \IZ [/mm] der linearen Kongruenz 10 * 5 [mm] \equiv [/mm] 35 (mod m). (Ein konkreter Rechenweg wurde bisher noch nicht explizit vorgestellt. Sie können die Kongruenz jedoch auf eine diophantische Gleichung zurückführen).

Hinweise:

Eine Kongruenz der Form a * x [mm] \equiv [/mm] b (mod m) mit m [mm] \in \IN [/mm] und a,b [mm] \in \IZ [/mm] heißt lineare Kongruenz in einer Unbestimmten x.
Eine lineare Kongruenz a * x [mm] \equiv [/mm] b (mod m) in einer Unbestimmten x heißt lösbar genau dann, wenn ein x0 [mm] \in \IZ [/mm] existiert, so dass a * xo [mm] \equiv [/mm] b (mod m).
Für alle a, q  [mm] \in \IZ [/mm] , m [mm] \in \IN: [/mm] a + q * m [mm] \equiv [/mm] a (mod m).

Hallo,

als allererstes wollte ich mich mal bei denjenigen bedanken, die mir letztes Semester schon geholfen haben...

hab die Prüfung in "Fachwissenschaftlichen Grundlagen" mit 3,3 bestanden und war damit vollkommen zufrieden (im Endeffekt braucht man nur noch 15 von 50 Punkten um überhaupt zu bestehen und es haben 48% bestanden - naja, typisch Mathe halt :P)
Also wie gesagt, ich wäre auch schon mit ner 4,0 zufrieden gewesen, hauptsache bestehen.
Nun habe ich noch "Algebra und elementare Zahlentheorie" und dann hab ich Mathe im Studium glücklicherweise hinter mir... manchmal fragt man sich schon, wozu man das alles als Förderschullehrer später mal brauchen soll, aber nun gut, lassen wir das
:) Ich bin euch auf jeden Fall super dankbar und hoffe, dass mir eure hilfreichen Tipps auch dieses Semester ermöglichen die Klausur einfach irgendwie zu bestehen. Vielen, vielen Dank!!!

Nun zu den von mir gestellten Aufgaben:

Ich möchte bitte, bitte, dass ihr keine konkreten Lösungen postet (aber das ist hier ja sowieso nicht erwünscht), möchte schon versuchen irgendwie auch einen Teil selbst auf die Reihe zu bekommen, aber mir fehlen häufig die ersten Ansätze -.- Achso und vielleicht helfen euch die Hinweise um mir auf die Sprünge zu helfen ohne gleich zu viel zu verraten?

Aber ich habe zumindest schon mal ein paar Lösungsvorschläge:

1. Zu 1 -.-: Mir fallen Beweise immer so sau schwer, hier brauch ich bestimmt wieder am meisten Hilfe... vielleicht könntet ihr mir hier erst mal erste Tipps für irgendwelche Ansätze geben? -.- Meistens versteh ich's ja schon irgendwie, aber ich lass mich immer so abschrecken, wenn da steht beweisen oder widerlegen Sie

2. Mein Lösungsvorschlag:

Für alle a, b Elemente aus den ganzen Zahlen und m Element aus den natürlichen Zahlen gilt:
Genau dann, wenn ein Element x aus den ganzen Zahlen existiert, für das gilt: a * x kongruent b (modulo m)), ist der größte gemeinsame Teiler von a und m ein Teiler von b.

Mh, vielleicht irgendwie so? Wobei ich nicht weiß wie ich das mit kongruent und modulo umgangssprachlich formulieren kann

3. Lösbare lineare Kongruenz:

10*x [mm] \equiv [/mm] 35 (mod 5)

Unlösbare lineare Kongruenz:

10*x [mm] \equiv [/mm] 35 (mod 4)


4. Lösungen von  m = 1 und 5

5. Ähm versteh ich irgendwie nicht...
wenn ich jetzt z.B. für x= 1 einsetze und für m= 5 nehme...
dann hätte ich ja

10*1 - 35: -25 ähm und 5 ist ein Teiler von -25, da 5*x = -25;  x= -5 gilt.
damit hab ich doch eine konkrete Lösung oder nicht? Was brauch ich denn da noch diophantische Gleichungen o.O

Mh, okay, könnt ja mal Stellung zu meinen Lösungsvorschlägen nehmen. Wäre euch super dankbar.

Lg Verena


        
Bezug
lösbarkeit von Kongruenzen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Sa 15.05.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de