www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - lösung einer exp. gleichung
lösung einer exp. gleichung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lösung einer exp. gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:39 Do 08.01.2009
Autor: Lara102

hallo, ich übe zur zeit für eine mathe klausur
und rechne jetzt schon das 5. mal diese doofe aufgabe und komm nicht auf das ergebnis.

[mm] f(x)=25(e^{-0,2t}-e^{-0,8t}) [/mm]
[mm] f'(x)=-5e^{-0,2t}+20e^{-0,8t} [/mm]
[mm] 0=-5e^{-0,2t}+20e^{-0,8t} [/mm]

ich habs mit ln versucht, ohne ln, mit ausklammern etc pp
liebe grüße lara

        
Bezug
lösung einer exp. gleichung: ln-Gesetze anwenden
Status: (Antwort) fertig Status 
Datum: 13:59 Do 08.01.2009
Autor: barsch

Hi,

du willst also

>  [mm]0=-5e^{-0,2t}+20e^{-0,8t}[/mm]

lösen.

[mm] 0=-5e^{-0,2t}+20e^{-0,8t} [/mm]

[mm] \gdw{5e^{-0,2t}=20e^{-0,8t}} [/mm]

[mm] \gdw{ln(5e^{-0,2t})=ln(20e^{-0,8t})} [/mm]

Jetzt die ln-Gesetze anwenden: z.B. [mm] ln(c\cdot{d})=ln(c)+ln(d) [/mm] und [mm] ln(a^x)=x*ln(a) [/mm]

Das bringt dich zum Ziel.

MfG barsch

Bezug
                
Bezug
lösung einer exp. gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:29 Do 08.01.2009
Autor: Lara102

hä? aber das hatte ich gemacht..
da kam ich auch auf nichts...

[mm] 5e^{-0,2t} [/mm] = [mm] 20e^{-0,8t} [/mm]
[mm] ln(5e^{-0,2t}) [/mm] = [mm] ln(20e^{-0,8t}) [/mm]
-0,2t (ln5 + lne) = -0,8t(ln20+lne)
äähm und nun ausmultiplizieren, sonst fällt das t ja weg.. aber dann hab ich vor dem ln noch das t jeweils

lg lara

Bezug
                        
Bezug
lösung einer exp. gleichung: kürzen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:36 Do 08.01.2009
Autor: Al-Chwarizmi

ich würde vorschlagen, endlich mal durch 5 zu dividieren ...

Bezug
                                
Bezug
lösung einer exp. gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:18 Do 08.01.2009
Autor: reverend

Ich hätte eher vorgeschlagen, erst beide Seiten durch 7 zu teilen und dann aus dem ganzen die Wurzel zu ziehen. Dann hätte man noch mehr Rechenregeln einüben können...
;-)

Bezug
                        
Bezug
lösung einer exp. gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:36 Do 08.01.2009
Autor: reverend

Hallo Lara,

> hä? aber das hatte ich gemacht..
>  da kam ich auch auf nichts...
>  
> [mm]5e^{-0,2t}[/mm] = [mm]20e^{-0,8t}[/mm]
>  [mm]ln(5e^{-0,2t})[/mm] = [mm]ln(20e^{-0,8t})[/mm]
>  -0,2t (ln5 + lne) = -0,8t(ln20+lne)

Na, nicht ganz. Richtig wäre
[mm] \ln{5}+\ln{(e^{-0,2t})}=\ln{20}+\ln{(e^{-0,8t})} [/mm]

Rechne ab da mal weiter.

Grüße,
reverend

Bezug
                                
Bezug
lösung einer exp. gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:06 Do 08.01.2009
Autor: Lara102

mh..
t=2,31..
ich dummes huhn hatte einen vorzeichenfehler -.-"
danke sehr =)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de