www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - log Ableiten
log Ableiten < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

log Ableiten: Ableiten von log Funktion
Status: (Frage) beantwortet Status 
Datum: 20:46 Mi 30.01.2008
Autor: hsvlemsahl

Aufgabe
Ableitung von log2 3x bilden.

Ergebnis soll 3/ln2 x 1/3x und 1/x ln2 sein.

Hallo zusammen,
ich habe ein Problem mit einer Ableitung.
Kann mir evtl. jemand die Ableitung von log2 3x erklären?

Ergebnis soll 3/ln2 x 1/3x und 1/x ln2 sein.

Leider komme ich da nicht drauf. Welche Regel muss man anwenden?

Danke und Gruß

Friedrich

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
log Ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 20:56 Mi 30.01.2008
Autor: Zwerglein

Hi, hsv-Fan,

(3:0 in Essen - na, das passt!)

> Ableitung von log2 3x bilden.

Du meinst sicher: f(x) = [mm] log_{2}(3x), [/mm] stimmt's?
  

> Ergebnis soll 3/ln2 x 1/3x und 1/x ln2 sein.

Zunächst brauchst Du die Regel  zur Basisumformung:

[mm] log_{2}(x) [/mm] = [mm] \bruch{ln(x)}{ln(2)} [/mm]

Und dann brauchst Du nur noch die Kettenregel!

Also: f(x) = [mm] log_{2}(3x) [/mm] =  [mm] \bruch{ln(3x)}{ln(2)} [/mm] = [mm] \bruch{1}{ln(2)}*ln(3x) [/mm]

f'(x) =  [mm] \bruch{1}{ln(2)}*\bruch{1}{3x}*3 [/mm] = [mm] \bruch{1}{ln(2)*x} [/mm]

mfG!
Zwerglein


Bezug
                
Bezug
log Ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:16 Do 31.01.2008
Autor: hsvlemsahl

Ich habe leider nochmal eine Frage hierzu:

Umformung ist klar! Aber die Kettenregel hierauf bezogen leider nicht.
f'(x) = g'(f(x)) * f'(x)

was ist hier jetzt g und was f?

Vermutung:
g(x) = 3x
f(x) = ln (3x)

Danke und Gruß!

PS: 3:0 is Essen war nicht übel!

Bezug
                        
Bezug
log Ableiten: andersrum
Status: (Antwort) fertig Status 
Datum: 09:33 Do 31.01.2008
Autor: Roadrunner

Hallo hsvlemsahl!


> Vermutung:
> g(x) = 3x
> f(x) = ln (3x)

[notok] Genau andersrum. Die innere Funktion ist $f(x) \ = \ 3*x$ ; und die äußere Funktion $g(x) \ = \ [mm] \ln(...)$ [/mm] .


Gruß vom
Roadrunner


Bezug
        
Bezug
log Ableiten: noch ein Ansatz...
Status: (Antwort) fertig Status 
Datum: 09:39 Do 31.01.2008
Autor: Karl_Pech

Hallo Friedrich,


> Ableitung von log2 3x bilden.
>  
> Ergebnis soll 3/ln2 x 1/3x und 1/x ln2 sein.
>  Hallo zusammen,
>  ich habe ein Problem mit einer Ableitung.
>  Kann mir evtl. jemand die Ableitung von log2 3x erklären?
>  
> Ergebnis soll 3/ln2 x 1/3x und 1/x ln2 sein.
>  
> Leider komme ich da nicht drauf. Welche Regel muss man
> anwenden?


Du könntest hier zuerst die Regeln des Logarithmus anwenden. Es gilt nämlich:


[mm]\log_2(3x)=\log_2 3 + \log_2 x[/mm]


Da [mm]\log_2 3[/mm] konstant ist, fällt es beim Ableiten weg. Du müßtest also nur noch [mm]\log_2 x[/mm] ableiten.



Viele Grüße
Karl




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de