www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - logarithums
logarithums < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

logarithums: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:01 Sa 27.01.2007
Autor: fertig

Aufgabe
[mm] 5^{2y}=4^{1-y} [/mm]

HâLLô,

ehm,ja die oben aufgeführte Gleichung soll ich durch logarithmieren lösen...
ich habe schon damit begeonnen:
[mm] 5^{2y} [/mm] = [mm] 4^{1-y} [/mm]
[mm] lg5^{2y} [/mm] = [mm] lg4^{1-y} [/mm]
2ylg5 = (1-y) lg4

~> ...Aber ich schätze mal,dass das noch nicht komplett gelöst ist,oder?

Mfg
fertig

        
Bezug
logarithums: Antwort
Status: (Antwort) fertig Status 
Datum: 13:12 Sa 27.01.2007
Autor: Karl_Pech

Hallo fertig,


>  [mm]5^{2y}[/mm] = [mm]4^{1-y}[/mm]
>  [mm]lg5^{2y}[/mm] = [mm]lg4^{1-y}[/mm]
>  2ylg5 = (1-y) lg4
>  
> ~> ...Aber ich schätze mal,dass das noch nicht komplett
> gelöst ist,oder?


Fast fertig ... multipliziere den rechten Term aus (Klammer auflösen), "bringe" den so entstandenen y-Term "auf die linke Seite", klammere aus -> ("Variablen nach links;Zahlen nach rechts").



Grüße
Karl





Bezug
                
Bezug
logarithums: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:34 Sa 27.01.2007
Autor: fertig

Thanks,erstma für deine Hilfe...
also,ich bin jetzt soweit gekommen:

[mm]5^{2y}[/mm] = [mm]4^{1-y}[/mm]
[mm]lg5^{2y}[/mm] = [mm]lg4^{1-y}[/mm]
2ylg5 = (1-y) lg4
2ylg5= 1*lg4-ylg4
2ylg5-ylg4=lg4

...wahrscheinlich stell ich mich auch nur irgendwie dumm an xD...aba irgendwie komme ich hier leider nicht mehr weiter...

wäre nett,wenn mir jemand weiterhelfen könnte...
mfg,
jule


Bezug
                        
Bezug
logarithums: Antwort
Status: (Antwort) fertig Status 
Datum: 14:58 Sa 27.01.2007
Autor: M.Rex

Hallo

> Thanks,erstma für deine Hilfe...
>  also,ich bin jetzt soweit gekommen:
>  
> [mm]5^{2y}[/mm] = [mm]4^{1-y}[/mm]
>  [mm]lg5^{2y}[/mm] = [mm]lg4^{1-y}[/mm]
>  2ylg5 = (1-y) lg4
>  2ylg5= 1*lg4-ylg4
>  2ylg5-ylg4=lg4

[mm] \gdw [/mm] y*lg(5²)-ylg(4)=lg4
[mm] \gdw [/mm] y(lg(25)-lg(4))=lg4
[mm] \gdw y*lg(\bruch{25}{4})=lg4 [/mm]
[mm] \gdw y=\bruch{lg(4)}{lg(\bruch{25}{4})} [/mm]

>  
> ...wahrscheinlich stell ich mich auch nur irgendwie dumm an
> xD...aba irgendwie komme ich hier leider nicht mehr
> weiter...
>  
> wäre nett,wenn mir jemand weiterhelfen könnte...
>  mfg,
>  jule
>  

Die Gesetzt dazu gibt es []hier

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de