www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - lokal-endliche überdeckung
lokal-endliche überdeckung < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lokal-endliche überdeckung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:59 Di 07.12.2010
Autor: Salamence

Aufgabe
a) Seien X ein topologischer Raum, [mm] (U_{i})_{i\in I} [/mm] eine lokal-endliche Überdeckung von X und [mm] f:I\to [/mm] J eine beliebige Abbildung. Zeigen Sie, dass dann [mm] (\bigcup_{i \in f^{-1}(j)}U_{i})_{j\in J} [/mm] auch eine lokal-endliche Überdeckung von X ist.

b) Seien M eine verallgemeinerte differenzierbare Mannigfaltigkeit und [mm] (U_{i})_{i\in I} [/mm] eine lokal-endliche Überdeckung von M. Zeigen Sie, dass es dann eine untergeordnete Zerlegung [mm] (\varphi_{i}:M\to\IR)_{i \in I} [/mm] (über derselben Indexmenge I) gibt.
Bem.: Wir hatten bereits gesehen, dass es diese Zerlegung gibt, sofern alle [mm] U_{i} [/mm] relativ kompakt und in einem Kartengebiet enthalten sind. Verfeinern Sie die Überdeckung, sodass das bekannte Resultat eine Partition der Eins liefert und wenden Sie dann das Auswahlaxiom sowie die vorige Aufgabe an.

c) Beweisen Sie die glatte Version von Urysohns Lemma:
Seien M eine verallgemeinerte differenzierbare Mannigfaltigkeit und [mm] A\subset U\subset [/mm] M (A abgeschlossen, U offen). Dann gibt es eine glatte Funktion [mm] f:M\to[0,1], [/mm] deren Träger in U liegt und auf A identisch 1 ist.
Hinweis: Betrachten Sie die lokal-endliche Überdeckung [mm] U\cup(M\backslash [/mm] A) und benutzen Sie b).

Hallo!

Also a) wirkt jetzt erstmal klar, zumindest die Überdeckungseigenschaft ist es. Bei der lokalen Endlichkeit muss man dann schon ein wenig überlegen. Aber dann ist es irgendwie auch klar, da es ja nicht mehr Schnitte mit den offenen Mengen geben kann...

Dagegen sind b) und c) nicht so einfach. Mmh? Da steht zwar bei, wie es gehen soll, aber wie es nun genau geht weiß ich nicht.
c) versteh ich noch so halbwegs aber b) so garnicht.



        
Bezug
lokal-endliche überdeckung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:20 Mi 08.12.2010
Autor: pelzig

Also für die a): Nennen wir mal [mm]\bigcup_{i\in f^{-1}(j)}U_i=:\tilde{U}_j[/mm]. Ist nun [mm]x\in X[/mm] in [mm]U_i[/mm], so folgt [mm]x\in \tilde{U}_{f(i)}[/mm], also ist auch [mm](\tilde{U}_{j\in J})[/mm] eine Überdeckung von [mm]X[/mm]. Nun zur lokal-Endlichkeit: Nimm [mm]x\in X[/mm] und eine Umgebung [mm]U[/mm] von [mm]x[/mm], sodass [mm]I_U:=\{i\in I\mid U_i\cap U\ne\emptyset\}[/mm] endlich ist. Wir wollen zeigen dass auch [mm]J_U:=\{j\in J\mid \tilde{U}_j\cap U\ne\emptyset\}[/mm] endlich ist. Sei [mm]j\in J_U[/mm], dann ist [mm]\tilde{U}_j\cap U\ne\emptyset[/mm], d.h. [mm]U_i\cap U\ne\emptyset[/mm] für ein [mm]i\in f^{-1}(j)[/mm], was gleichbedeutend mit [mm]j\in f(I_U)[/mm] ist! Damit haben wir [mm]J_U\subset f(I_U)[/mm] gezeigt, also ist auch [mm]J_U[/mm] endlich.

Zu b) Habe ich jetzt nicht gleich rausbekommen und lass sie dir mal zum Knobeln. Du solltest wahrscheinlich benutzen dass jede Mannigfaltigkeit lokal kompakt und lindelöfsch ist usw.

Zu c) In der Aufgabe steht doch schon alles: Nimm die lokal-endliche (da endliche) offene Überdeckung [mm]\{U,M\setminus A\}[/mm] von [mm]M[/mm] und eine nach b) untergeordnete, glatte Zerlegung der Eins [mm]\{\varphi_1,\varphi_2\}[/mm]. Dann hat [mm]\varphi_1[/mm] Träger in [mm]U[/mm], aber [mm]\varphi_1|_A\equiv 1[/mm], da dort [mm]\varphi_2[/mm] gleich [mm]0[/mm] ist und ja [mm]\varphi_1+\varphi_2\equiv 1[/mm] gilt. Also hat [mm]\varphi_1[/mm] die gewünschten Eigenschaften

Viele Grüße,
Robert


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de