www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - lokale Extrema
lokale Extrema < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lokale Extrema: Frage
Status: (Frage) beantwortet Status 
Datum: 21:36 Mo 07.03.2005
Autor: Plantronics

Hi,

folgende Aufgabe sollte ich lösen:

[Dateianhang nicht öffentlich]

Aber irgendwie blicke ich da gar nicht durch!

Ich habe mir einige Graphen zeichnen lassen, und habe eigentlich immer festgestellt, dass es ein minimum gibt (zumindest bei [mm] $h_{1}$ [/mm] wenn die ursprünglichen auch ein minimum hatten. Daher glaube ich, dass es stimmt. Nur weiss ich nicht wie ich das zeigen könnte.
Derzeit habe ich mir folgendes überlegt:
Hätte [mm] $h_{1}$ [/mm] ein Extremum, so müsste [mm] $h_{1}'=0$ [/mm] sein (in (a,b)). Aber alles was ich über [mm] $h_{1}'$ [/mm] weiss ist ja, das [mm] $h_{1}'=f'+g'$ [/mm] ist, und f' im Intervall (a,b) stets >0 und g' stets <0. Nur hilft mir das auch nicht wirklich weiter.
Hat irgendwer irgendwelche Vorschläge und könnte mir helfen?

mfg,
  der unwissende Martin

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
        
Bezug
lokale Extrema: Gedankenanstoss
Status: (Antwort) fertig Status 
Datum: 00:04 Di 08.03.2005
Autor: Paulus

Lieber Plantronics

ich glaube, du machst es dir ein Bisschen zu einfach. Wie hast du dir das denn zum Beispiel zeichnen lassen? x ist ja ein m-Tupel, und y ein n-Tupel. Es sind ja Elemente eines m-dimensionalen respektive n-dimensionalen Raumes.

Ich denke, du solltest eher über die Definition von strengem Minimum resp. Maximum gehen:

f hat an der Stelle a ein strenges Minimum wenn gilt:
[mm] $f(a+\Delta [/mm] a) > f(a)$ für alle [mm] $\Delta [/mm] a [mm] \not [/mm] = [mm] \vec{0}$ [/mm]

Das könnte man auch so schreiben:
[mm] $f(a+\Delta [/mm] a) = f(a) + [mm] \epsilon_f$ [/mm] für alle [mm] $\Delta [/mm] a [mm] \not [/mm] = [mm] \vec{0}$, [/mm]

Oder g hat an der Stelle g ein strenges Minimum wenn gilt:
[mm] $g(b+\Delta [/mm] b) > g(b)$ für alle [mm] $\Delta [/mm] b [mm] \not [/mm] = [mm] \vec{0}$ [/mm] resp.
[mm] $g(b+\Delta [/mm] b) = g(b) + [mm] \epsilon_g$ [/mm] für alle [mm] $\Delta [/mm] b [mm] \not [/mm] = [mm] \vec{0}$ [/mm]

Wobei wie allgemein üblich noch vorausgesetzt wird, dass die beiden Epsilon streng grösser als Null sind.

(Beachte, dass in der 1. Gleichung der Nullvektor des m-dimensionalen Raumes gemeint ist, für die 2. Gleichung aber jener des n-dimensionalen Raumes)

Für [mm] $h_1$ [/mm] gilt zum Beispiel:

[mm] $h_1(a+\Delta a,b+\Delta [/mm] b)=$
[mm] $f(a+\Delta a)+g(b+\Delta [/mm] b)=$
[mm] $f(a)+\epsilon_f+g(b) [/mm] + [mm] \epsilon_g [/mm] > f(a)+g(b)$

Damit ist gezeigt, dass, falls f in a und g in b je ein strenges Minimum haben, [mm] $h_1$ [/mm] in (a,b) auch eines hat.

Für [mm] $h_2$ [/mm] sähe das dann etwa so aus:

[mm] $h_2(a+\Delta a,b+\Delta [/mm] b)=$
[mm] $f(a+\Delta a)*g(b+\Delta [/mm] b)=$
[mm] $(f(a)+\epsilon_f)*(g(b) [/mm] + [mm] \epsilon_g)=$ [/mm]
[mm] $f(a)*g(b)+\epsilon_g*f(a)+\epsilon_f*g(b)+\epsilon_f*\epsilon_g$ [/mm]

Hier musst du Fallunterscheidungen machen. Wenn f und g positiv sind (je an der Stelle a resp. b), dann hat auch [mm] $h_2$ [/mm] ein strenges Minimum (an der Stelle (a,b)). Wenn aber f(a) und g(b) negativ sind, dann liegt bei [mm] $h_2(a,b)$ [/mm] ein strenges Maximum vor.  Haben die beiden Funktionen aber unterschiedliche Vorzeichen, dann liegt eher so etwas in der Art eines Sattelpunktes vor, wenngleich der etwas schwer vorzustellen ist, wenn m und n grösser als 1 sind!

Falls f(a) oder g(b) Null sind, musst du wohl noch eine gesonderte Betrachtung anstellen.

Kannst du die Aufgabe jetzt selber weiter bearbeiten?

Mit lieben Grüssen

Paul

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de