www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - lokale Extrema bestimmen
lokale Extrema bestimmen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lokale Extrema bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:31 Di 15.12.2015
Autor: Katti1712

Aufgabe
Untersuchen Sie die folgenden Funktionen [mm] f:\IR^2\to\IR [/mm] auf lokale Extrema (d.h. Minima, Maxima und Sattelpunkte):

[mm] f(x,y)=(1+e^y)cos(x)-ye^y [/mm]

Hallo,

leider komme ich hier überhaupt nicht voran und ich hoffe ihr könnt mir hierbei helfen.

Ich habe bis jetzt den Gradienten bestimmt und zwar wie folgt:
[mm] \bruch{\partial}{\partial*x}=((1+e^y)cos(x)-ye^y)=-(e^y+1)sin(x) [/mm]
[mm] \bruch{\partial}{\partial*y}=((1+e^y)cos(x)-ye^y)=e^y(cos(x)-y-1) [/mm]
[mm] \Rightarrow grad(f)=\vektor{-(e^y+1)sin(x) \\ e^y(cos(x)-y-1)} [/mm]

Dummerweise scheitere ich leider schon daran die Nullstellen hierzu zu finden. Ich wäre euch sehr dankbar, wenn ihr mir hierbei helfen könnt.

Lieben Gruß

Katti1712

        
Bezug
lokale Extrema bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 04:48 Di 15.12.2015
Autor: fred97


> Untersuchen Sie die folgenden Funktionen [mm]f:\IR^2\to\IR[/mm] auf
> lokale Extrema (d.h. Minima, Maxima und Sattelpunkte):
>  
> [mm]f(x,y)=(1+e^y)cos(x)-ye^y[/mm]
>  Hallo,
>
> leider komme ich hier überhaupt nicht voran und ich hoffe
> ihr könnt mir hierbei helfen.
>  
> Ich habe bis jetzt den Gradienten bestimmt und zwar wie
> folgt:
>  
> [mm]\bruch{\partial}{\partial*x}=((1+e^y)cos(x)-ye^y)=-(e^y+1)sin(x)[/mm]
>  
> [mm]\bruch{\partial}{\partial*y}=((1+e^y)cos(x)-ye^y)=e^y(cos(x)-y-1)[/mm]
>  [mm]\Rightarrow grad(f)=\vektor{-(e^y+1)sin(x) \\ e^y(cos(x)-y-1)}[/mm]
>  
> Dummerweise scheitere ich leider schon daran die
> Nullstellen hierzu zu finden. Ich wäre euch sehr dankbar,
> wenn ihr mir hierbei helfen könnt.


[mm] $(e^y+1)sin(x)=0 \gdw [/mm] sin(x)=0$

Was sind die Nullstellen des Sinus ?

FRED

>
> Lieben Gruß
>
> Katti1712


Bezug
                
Bezug
lokale Extrema bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:16 Di 15.12.2015
Autor: Katti1712

Hallo Fred,

erst ein Mal vielen Dank für deine Hilfe!

Naja die Nullstellen des Sinus sind [mm] \pi, 2\pi, 3\pi, 4\pi [/mm] ...

Aber ich weiß jetzt leider trotzdem nicht wie es weiter geht. Zum einen brauche ich noch die Nullstellen der anderen Funktion.

Und wie bestimme ich die Hesse-Matzien, wenn ich unendlich viele Nullstellen habe?

Bezug
                        
Bezug
lokale Extrema bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:28 Di 15.12.2015
Autor: fred97


> Hallo Fred,
>  
> erst ein Mal vielen Dank für deine Hilfe!
>  
> Naja die Nullstellen des Sinus sind [mm]\pi, 2\pi, 3\pi, 4\pi[/mm]

Na, na, das sind aber nicht alle !

Es sind die Punkte $k [mm] \pi$ [/mm] mit $ k [mm] \in \IZ$. [/mm]

Ist nun $ k [mm] \in \IZ$, [/mm] so suchen wir noch [mm] y_k [/mm] so, dass [mm] f_y(k \pi,y_k)=0 [/mm] ist, also

    [mm] y_k=(-1)^k-1. [/mm]

Das liefert die stationären Stellen

(*)   $ (2k [mm] \pi,0)$ [/mm]  und $((2k+1) [mm] \pi,-2)$ [/mm]  ($ k [mm] \in \IZ$) [/mm]

    

> ...
>  
> Aber ich weiß jetzt leider trotzdem nicht wie es weiter
> geht. Zum einen brauche ich noch die Nullstellen der
> anderen Funktion.
>  
> Und wie bestimme ich die Hesse-Matzien, wenn ich unendlich
> viele Nullstellen habe?


Setze die Punkt aus (*) in die Hessematrix ein .....

FRED

Bezug
                                
Bezug
lokale Extrema bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:02 Di 15.12.2015
Autor: Katti1712

[mm] H_f(x,y) [/mm] sieht bei mir so aus:

[mm] \pmat{ -(e^y+1)cos(x) & -e^y*sin(x) \\ -e^y*sin(x) & e^y(cos(x)-y-2-sin(x)) } [/mm]

[mm] \Rightarrow H_f(2k\pi,0)=\pmat{ -2cos(2k\pi) & -sin(sk\pi) \\ -sin(2k\pi) & -sin(2k\pi)+cos(2k\pi)-2 } [/mm]

und [mm] H_f((2k+1)\pi,-2)=\pmat{ -(e^-^2+1)*cos(2k+1)\pi & -e^-^2*sin(2k+1)\pi \\ -e^-^2*sin(2k+1)\pi & e^-^2(cos((2k+1)\pi)-sin((2k+1)\pi)) } [/mm]

Also wenn das so stimmen sollte, hätte ich jetzt leider keine Ahnung wie ich hiervon die Eigenwerte bestimmen soll.
Ich habe leider Probleme damit umzugehen, wenn etwas sehr allgemein gehalten ist. Ich hoffe du kannst mir weiterhin helfen.

Bezug
                                        
Bezug
lokale Extrema bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:08 Di 15.12.2015
Autor: fred97


> [mm]H_f(x,y)[/mm] sieht bei mir so aus:
>
> [mm]\pmat{ -(e^y+1)cos(x) & -e^y*sin(x) \\ -e^y*sin(x) & e^y(cos(x)-y-2-sin(x)) }[/mm]
>  
> [mm]\Rightarrow H_f(2k\pi,0)=\pmat{ -2cos(2k\pi) & -sin(sk\pi) \\ -sin(2k\pi) & -sin(2k\pi)+cos(2k\pi)-2 }[/mm]
>  
> und [mm]H_f((2k+1)\pi,-2)=\pmat{ -(e^-^2+1)*cos(2k+1)\pi & -e^-^2*sin(2k+1)\pi \\ -e^-^2*sin(2k+1)\pi & e^-^2(cos((2k+1)\pi)-sin((2k+1)\pi)) }[/mm]
>  
> Also wenn das so stimmen sollte, hätte ich jetzt leider
> keine Ahnung wie ich hiervon die Eigenwerte bestimmen soll.
> Ich habe leider Probleme damit umzugehen, wenn etwas sehr
> allgemein gehalten ist. Ich hoffe du kannst mir weiterhin
> helfen.  

Schon im 1. Semester sollte man gelernt haben:


[mm] $sin((2k+1)\pi))= [/mm] ? , [mm] cos((2k+1)\pi)= [/mm] ? , sin(2k [mm] \pi)= [/mm] ? ,cos(2k [mm] \pi)= [/mm] ?$

FRED

Bezug
                                                
Bezug
lokale Extrema bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:54 Di 15.12.2015
Autor: Katti1712

Bevor ich weiter mache würde ich gerne noch Mal wissen, ob es denn jetzt stimmt was ich geamacht habe :)

Also sieht das jetzt so aus:

[mm] H_f(2k\pi,0) [/mm] = [mm] \pmat{ -2 & 0 \\ 0 & -1} [/mm]

und [mm] H_f((2k+1)\pi,-2) [/mm] = [mm] \pmat{ \bruch{1}{e^2}-1 & 0 \\ 0 & -\bruch{3}{e^2}} [/mm]



Bezug
                                                        
Bezug
lokale Extrema bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:01 Mi 16.12.2015
Autor: fred97


> Bevor ich weiter mache würde ich gerne noch Mal wissen, ob
> es denn jetzt stimmt was ich geamacht habe :)
>  
> Also sieht das jetzt so aus:
>  
> [mm]H_f(2k\pi,0)[/mm] = [mm]\pmat{ -2 & 0 \\ 0 & -1}[/mm]

Das stimmt.


>  
> und [mm]H_f((2k+1)\pi,-2)[/mm] = [mm]\pmat{ \bruch{1}{e^2}-1 & 0 \\ 0 & -\bruch{3}{e^2}}[/mm]

Das stimmt nicht.

FRED

>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de