www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Elektrotechnik" - magn. Feldstärke Doppelleitung
magn. Feldstärke Doppelleitung < Elektrotechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

magn. Feldstärke Doppelleitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:14 Mi 28.01.2009
Autor: tedd

Aufgabe
[Dateianhang nicht öffentlich]

Also ich habe mir erstaml aufgeschrieben,
dass ich 2 teilfeldstärken habe:

[Dateianhang nicht öffentlich]

[mm] \vec{H}=\vec{H_1}+\vec{H_2} [/mm]

Muss ich da die Ströme in unterschiedliche Richtungen laufen, bei einem I das Vorzeichen ändern? Kann ich mir aussuchen bei welchem?

[mm] \vec{H_1}=\bruch{I}{2*\pi*\vec{r_1}} [/mm]

[mm] \vec{H_2}=\bruch{-I}{2*\pi*\vec{r_2}} [/mm]

[mm] \vec{r_1}=\vec{r}-\vec{r_{11}} [/mm]

[mm] \vec{r_2}=\vec{r}-\vec{r_{21}} [/mm]

Ist eigentlich auch schon das einzige was mir dazu eingefallen ist...
Könnte jetzt noch jeweils den Winkel [mm] \phi [/mm] so ausdrücken:

[mm] \phi=\arccos*\left(\bruch{\vec{r}*\vec{r_{11}}}{|\vec{r}|*|\vec{r_{11}}|}\right) [/mm] aber das gilt doch nur für [mm] \phi \in [/mm] [0°;180°] oder?

[mm] 180°-\phi=\arccos*\left(\bruch{\vec{r}*\vec{r_{21}}}{|\vec{r}|*|\vec{r_{21}}|}\right) [/mm]

Die Längen von den Vektoren [mm] \vec{r_{21}}, \vec{r_{11}} [/mm] und [mm] \vec{r} [/mm] müssten ja jeweils [mm] \bruch{d}{2} [/mm] sein.

Jetzt weis ich allerdings nicht so wirklich weiter...

Eine andere Idee war noch, ob man das irgendwie mit dem Hüllintegral [mm] \integral_{}^{}{\vec{H}d\vec{s}} [/mm] machen könnte aber das ist auch nur eine Idee wo ich noch weniger wüsste wie man vorgehen kann.

Hat jemand einen Tip?

Danke shconmal im vorraus und besten Gruß,
tedd

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Anhang Nr. 2 (Typ: JPG) [nicht öffentlich]
        
Bezug
magn. Feldstärke Doppelleitung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:47 Mi 28.01.2009
Autor: rainerS

Hallo tedd!

> [Dateianhang nicht öffentlich]
>  Also ich habe mir erstaml aufgeschrieben,
>  dass ich 2 teilfeldstärken habe:
>  
> [Dateianhang nicht öffentlich]
>  
> [mm]\vec{H}=\vec{H_1}+\vec{H_2}[/mm]

Das ist richtig.

> Muss ich da die Ströme in unterschiedliche Richtungen
> laufen, bei einem I das Vorzeichen ändern? Kann ich mir
> aussuchen bei welchem?

Nein, denn die Richtung der Ströme ist vorgegeben: der linke fließt dir entgegen, der rechte von dir weg.

> [mm]\vec{H_1}=\bruch{I}{2*\pi*\vec{r_1}}[/mm]
>  
> [mm]\vec{H_2}=\bruch{-I}{2*\pi*\vec{r_2}}[/mm]

So ist das Unsinn: du kannst nicht durch Vektoren dividieren! Diese Gleichungen gelten nur für die Beträge:

[mm] |\vec{H_1}| = \bruch{I}{2*\pi*|\vec{r_1}|}[/mm]

[mm] |\vec{H_2}|=\bruch{I}{2*\pi*|\vec{r_2}|}[/mm]

(Weil hier nur die Beträge betrachtet werden, kommen keine negativen Vorzeichen vor.)

Du hast doch gerade hingeschrieben, dass der Vektor [mm] $\vec{H}$ [/mm] die Summe der Vektoren [mm] $\vec{H_1}$+$\vec{H_2}$ [/mm] ist.

Wie sieht das Feld [mm] $\vec{H}_1$ [/mm] bzw [mm] $\vec{H}_2$ [/mm] aus? Es sind kreisförmige Feldlinien um den Draht. Zur einfacheren Berechnung legen wir für den Moment den Nullpunkt des Koordinatensystems an die Stelle, an der der linke Draht die Zeichenebene durchstößt. Die Feldstärke [mm] $\vec{H}_2$ [/mm] an dem Punkte mit den Polarkoordinaten [mm] $\rho$ [/mm] und [mm] $\psi$ [/mm] ist dann

  [mm] \vec{H}_2 = \bruch{I}{2\pi\rho} \vektor{-\sin\psi\\\cos\psi\\0} [/mm]

Da du die Feldstärke im Endpunkt des Vektors [mm] $\vec{r}_2$ [/mm] ausrechnen willst, ist [mm] $\rho$ [/mm] die Länge dieses Vektors und [mm] $\psi$ [/mm] der Winkel zwischen [mm] $\vec{r}_2$ [/mm] und der x-Achse.

Analog kannst du [mm] $\vec{H}_1$ [/mm] ausdrücken, diesmal mit Hilfe des Vektors [mm] $\vec{r}_1$. [/mm] Die Gesamtfeldstärke ergibt sich natürlich durch Vektoraddition.

>  Könnte jetzt noch jeweils den Winkel [mm]\phi[/mm] so ausdrücken:
>  
> [mm]\phi=\arccos*\left(\bruch{\vec{r}*\vec{r_{11}}}{|\vec{r}|*|\vec{r_{11}}|}\right)[/mm]
> aber das gilt doch nur für [mm]\phi \in[/mm] [0°;180°] oder?
>  
> [mm]180°-\phi=\arccos*\left(\bruch{\vec{r}*\vec{r_{21}}}{|\vec{r}|*|\vec{r_{21}}|}\right)[/mm]
>  
> Die Längen von den Vektoren [mm]\vec{r_{21}}, \vec{r_{11}}[/mm] und
> [mm]\vec{r}[/mm] müssten ja jeweils [mm]\bruch{d}{2}[/mm] sein.

Das ist zwar richtig, aber etwas zu kompliziert gedacht. An der Zeichnung liest du ab:

  [mm] \vec{r} = \vektor {r\cos\phi\\r\sin\phi\\0} [/mm]

  [mm] \vec{r}_{11} = -\vec{r}_{21} = \vektor{d/2\\0\\0} [/mm]

und wie du selbst schreibst:

> [mm]\vec{r_1}=\vec{r}-\vec{r_{11}}[/mm]
>  
> [mm]\vec{r_2}=\vec{r}-\vec{r_{21}}[/mm]


Viele Grüße
   Rainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de