www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - max Ideale in Polynomring
max Ideale in Polynomring < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

max Ideale in Polynomring: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:34 Fr 20.04.2012
Autor: jack1975

Aufgabe
Sei $k$ ein beliebiger Körper. Zeigen Sie: Jedes maximale Ideal [mm] $\mathfrak{m}$ [/mm] von [mm] $k[x_1, \ldots, x_n]$ [/mm] hat die Form [mm] $\{ f : f(P) = 0 \}$ [/mm] für ein $P [mm] \in \overline{k^n}$. [/mm] Diskutieren Sie auch das Beispiel [mm] $(x^2 [/mm] + 1) [mm] \subset \IR[x]$. [/mm]

Hallo zusammen,

ich soll die obige Aufgabe lösen. Wir haben in der Vorlesung den schwachen Hilbertschen Nullstellensatz bewiesen, der ja die Frage nach den maximalen Idealen im Falle, dass $k$ algebraisch abgeschlossen ist, beantwortet. Dann wäre [mm] $\mathfreak{m}$ [/mm] gerade von der Form [mm] $(x_1 [/mm] - [mm] \alpha_1, \ldots, x_n [/mm] - [mm] \alpha_n)$. [/mm] Diese Variante haben wir unter anderem mit Hilfe der Noether-Normalisierung bewiesen. Ich vermute mal, dass man den allgemeinen Fall irgendwie auf den Hilbertschen Nullstellensatz zurückspielen kann, aber ich weiß noch nicht so wirklich wie.
Falls $k$ algebraisch abgeschlossen wäre, so ist das $P$ ja gegeben durch [mm] $P=(\alpha_1, \ldots, \alpha_n)$. [/mm] Könnte man im allgemeinen Fall dann einfach den algebraischen Abschluss [mm] $\overline{k^n}$ [/mm] betrachten, das maximale Ideal dann vielleicht in den Polynomring über [mm] $\overline{k^n}$ [/mm] einbetten und so die Aussage gewinnen? Oder muss man einen anderen Zugang wählen.

Für jeden Hinweis wäre ich sehr dankbar.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
max Ideale in Polynomring: Antwort
Status: (Antwort) fertig Status 
Datum: 12:19 So 22.04.2012
Autor: marc1601


> Sei [mm]k[/mm] ein beliebiger Körper. Zeigen Sie: Jedes maximale
> Ideal [mm]\mathfrak{m}[/mm] von [mm]k[x_1, \ldots, x_n][/mm] hat die Form [mm]\{ f : f(P) = 0 \}[/mm]
> für ein [mm]P \in \overline{k^n}[/mm]. Diskutieren Sie auch das
> Beispiel [mm](x^2 + 1) \subset \IR[x][/mm].
>  Hallo zusammen,
>  
> ich soll die obige Aufgabe lösen. Wir haben in der
> Vorlesung den schwachen Hilbertschen Nullstellensatz
> bewiesen, der ja die Frage nach den maximalen Idealen im
> Falle, dass [mm]k[/mm] algebraisch abgeschlossen ist, beantwortet.
> Dann wäre [mm]\mathfreak{m}[/mm] gerade von der Form [mm](x_1 - \alpha_1, \ldots, x_n - \alpha_n)[/mm].
> Diese Variante haben wir unter anderem mit Hilfe der
> Noether-Normalisierung bewiesen. Ich vermute mal, dass man
> den allgemeinen Fall irgendwie auf den Hilbertschen
> Nullstellensatz zurückspielen kann, aber ich weiß noch
> nicht so wirklich wie.
> Falls [mm]k[/mm] algebraisch abgeschlossen wäre, so ist das [mm]P[/mm] ja
> gegeben durch [mm]P=(\alpha_1, \ldots, \alpha_n)[/mm]. Könnte man
> im allgemeinen Fall dann einfach den algebraischen
> Abschluss [mm]\overline{k^n}[/mm] betrachten, das maximale Ideal
> dann vielleicht in den Polynomring über [mm]\overline{k^n}[/mm]
> einbetten und so die Aussage gewinnen? Oder muss man einen
> anderen Zugang wählen.

Also das mit der Einbettung des maximalen Ideals kann ja eigentlich nicht funktionieren, denn im Allgemeinen sind Bilder von Idealen unter Homomorphismen keine Ideale mehr.
Aber mir fällt jetzt spontan auch keine Lösung ein.

> jeden Hinweis wäre ich sehr dankbar.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
        
Bezug
max Ideale in Polynomring: Antwort
Status: (Antwort) fertig Status 
Datum: 12:55 So 22.04.2012
Autor: felixf

Moin!

> Sei [mm]k[/mm] ein beliebiger Körper. Zeigen Sie: Jedes maximale
> Ideal [mm]\mathfrak{m}[/mm] von [mm]k[x_1, \ldots, x_n][/mm] hat die Form [mm]\{ f : f(P) = 0 \}[/mm]
> für ein [mm]P \in \overline{k^n}[/mm]. Diskutieren Sie auch das
> Beispiel [mm](x^2 + 1) \subset \IR[x][/mm].
>  Hallo zusammen,
>  
> ich soll die obige Aufgabe lösen. Wir haben in der
> Vorlesung den schwachen Hilbertschen Nullstellensatz
> bewiesen, der ja die Frage nach den maximalen Idealen im
> Falle, dass [mm]k[/mm] algebraisch abgeschlossen ist, beantwortet.
> Dann wäre [mm]\mathfreak{m}[/mm] gerade von der Form [mm](x_1 - \alpha_1, \ldots, x_n - \alpha_n)[/mm].
> Diese Variante haben wir unter anderem mit Hilfe der
> Noether-Normalisierung bewiesen. Ich vermute mal, dass man
> den allgemeinen Fall irgendwie auf den Hilbertschen
> Nullstellensatz zurückspielen kann, aber ich weiß noch
> nicht so wirklich wie.
> Falls [mm]k[/mm] algebraisch abgeschlossen wäre, so ist das [mm]P[/mm] ja
> gegeben durch [mm]P=(\alpha_1, \ldots, \alpha_n)[/mm]. Könnte man
> im allgemeinen Fall dann einfach den algebraischen
> Abschluss [mm]\overline{k^n}[/mm] betrachten, das maximale Ideal
> dann vielleicht in den Polynomring über [mm]\overline{k^n}[/mm]
> einbetten und so die Aussage gewinnen? Oder muss man einen
> anderen Zugang wählen.

Ich wuerd's so probieren:

Setze $S = [mm] \overline{k}[x_1, \dots, x_n]$ [/mm] und $R := [mm] k[x_1, \dots, x_n]$. [/mm]

Betrachte das Ideal [mm] $\mathfrak{m}' [/mm] := [mm] \mathfrak{m} [/mm] S$; dies ist ein Ideal in $S$.

Betrachte weiterhin die $k$-Algebra [mm] $S/\mathfrak{m}'$. [/mm] Diese wird durch die Restklassen der Elemente aus $k'$ und die Restklassen der [mm] $x_i$ [/mm] erzeugt. Da $x + [mm] \mathfrak{m}$ [/mm] ganz ueber $k$ ist, ist auch $x + [mm] \mathfrak{m}'$ [/mm] ganz ueber $k$, womit [mm] $S/\mathfrak{m}'$ [/mm] eine ganze Erweiterung von $k$ ist.

Zeige: [mm] $S/\mathfrak{m}'$ [/mm] ist nicht trivial, d.h. $1 [mm] \not\in \mathfrak{m}'$; [/mm]

Aus allen zusammen folgt, dass [mm] $S/\mathfrak{m}'$ [/mm] eine algebraische Koerpererweiterung von $k$ ist. Da [mm] $S/\mathfrak{m}'$ [/mm] bereits $k'$ enthaelt, muss also [mm] $S/\mathfrak{m} \cong [/mm] k'$ sein. Insbesondere ist [mm] $\mathfrak{m}'$ [/mm] ein maximales Ideal in $S$, womit du den Hilbertschen Nullstellensatz anwenden kannst und [mm] $\mathfrak{m}' [/mm] = [mm] \{ f \in S \mid f(P) = 0 \}$ [/mm] fuer ein $P [mm] \in \overline{k}^n$ [/mm] folgt.

Damit folgt dann [mm] $\mathfrak{m} \subseteq \{ f \in R \mid f(P) = 0 \} \subsetneqq [/mm] R$. Da [mm] $\mathfrak{m}$ [/mm] maximal ist, folgt die Behauptung.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de