www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - max Volumen bestimmen von Quad
max Volumen bestimmen von Quad < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

max Volumen bestimmen von Quad: Frage
Status: (Frage) beantwortet Status 
Datum: 23:56 Fr 17.06.2005
Autor: fussel1000

hallo,
brauch mal wieder eure hilfe bei folgender Aufgabe:
Bestimmen Sie unter allen Quadern mit fest vorgegebener Oberfläche A
denjenigen mit maximalen Volumen.

Zu meinem Lösungsansatz:
hab jetzt als Extremal bedingung V=a*b*c genommen
und als Nebenbedingung
A=4ac+2ab (wobei c ist die höhe)
dann hab ich das nach a umgestellt und hab erhalten
a=A*  [mm] \bruch{1}{4c+2b} [/mm]

Als Zielfunktion erhält man ja dann (indem man Nebenbedingung in Extremal bedinung einsetz):
V=A* [mm] \bruch{bc}{4c+2b} [/mm]

So und nun müsste man ja (da man das maximale Volumen bestimmen soll)
die Ableitung von V bilden und diese = 0 setzten.
Aber wenn man doch V ableitet gibt das doch die Jacobi Matrix weil
V von b und c abhängt oder nicht??
ab hier komm ich shcon irngedwie nicht mehr weiter.
Frage ist dann wie kommt man dann an das maximale volumen, dh
an b und c?????????????
Danke für Hinweise

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
max Volumen bestimmen von Quad: Fehler gefunden!
Status: (Antwort) fertig Status 
Datum: 00:36 Sa 18.06.2005
Autor: Zwerglein

Hi, fussel,

klar: Das Problem ist, dass Du nur eine Nebenbedingung hast, sodass Du am Ende eine Funktion mit 2 Variablen hast.

> Zu meinem Lösungsansatz:
> hab jetzt als Extremal bedingung V=a*b*c genommen

Richtig!

> und als Nebenbedingung
> A=4ac+2ab (wobei c ist die höhe)

Falsch: A = 2(ab+ac+bc).

Schau' mal, ob Du jetzt weiter kommst!

Bezug
                
Bezug
max Volumen bestimmen von Quad: Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:44 Sa 18.06.2005
Autor: fussel1000

Hallo Zwerglein,
danke für deinen HInweis.

Hab jetzt nochmal umgestellt,
hab aber immer noch das Problem mit den 2 Varibalen.
Hab jetzt als nebenbedingung
a=  [mm] \bruch{A-2bc}{2(b+c)} [/mm]

Insgesamt ergibt sich dann also als Zielfunktion

V=  [mm] \bruch{Abc-2b^{2}c^{2}}{2(b+c)} [/mm]


nun müsste man das ja maximieren??
wenn ich das allerdings ableite müsste sich aj wieder ne JacobiMatrix ergeben
und diese müsste ja dann = 0 sein oder??
aber wie macht man das genau?
oder kann man aus der gegeben Oberfläche irgednwie noch ne 2 Nebenbedinugng herleiten ??
danke für hinweise :)

Bezug
        
Bezug
max Volumen bestimmen von Quad: 2. Versuch Lösung richtig??
Status: (Frage) beantwortet Status 
Datum: 19:18 Sa 18.06.2005
Autor: fussel1000

hallo ,
hab jetzt noch mal weiter dran probiert und hab jetzt bei den ableitungen raus

[mm] \pmat{ \bruch{-2b^2c^2+Ac^2-4bc^3}{2(b+c)^2} & \bruch{-2b^2c^2+Ab^2-4cb^3}{2(b+c)^2}} [/mm]

wenn jetzt eine Extremstelle vorhanden ist, muss man doch diese Jakobi Matrix = 0 setzten oder??
und die wäre doch genau dann =0,wenn jeder Eintrag = 0 ist, d.h.
ich setzte nun die einzelnen Ableitungen =0
z.b.
[mm] -2b^2c^2+Ac^2-4bc^3=0 [/mm]
und dann nach c und die andere ableutung nach b auflösen.
richtig???


Bezug
                
Bezug
max Volumen bestimmen von Quad: So geht's ...
Status: (Antwort) fertig Status 
Datum: 05:18 So 19.06.2005
Autor: Loddar

Guten Morgen fussel!


> [mm]\pmat{ \bruch{-2b^2c^2+Ac^2-4bc^3}{2(b+c)^2} & \bruch{-2b^2c^2+Ab^2-4cb^3}{2(b+c)^2}}[/mm]

[daumenhoch]

  

> wenn jetzt eine Extremstelle vorhanden ist, muss man doch
> diese Jakobi Matrix = 0 setzten oder??
> und die wäre doch genau dann =0,wenn jeder Eintrag = 0 ist,
> d.h. ich setzte nun die einzelnen Ableitungen =0
> z.b. [mm]-2b^2c^2+Ac^2-4bc^3=0[/mm]
> und dann nach c und die andere ableutung nach b auflösen.
> richtig???

[ok] Du mußt aber schon beide Ableitungen gleichzeitig gleich Null setzen und dann als Gleichungssystem bearbeiten.

Zwei Triviallösungen entfallen ja dann ganz schnell, weil diese nicht sinnvoll sind im Sinne der Aufgabenstellung.


Gruß
Loddar


Bezug
                        
Bezug
max Volumen bestimmen von Quad: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:53 So 19.06.2005
Autor: Faenol

Hi Fussel !

Genau wie Loddar es gesagt hat !

Beide partiellen Null setzen, da hast dann im Prinzip ein LGS mit zwei Unbekannten, und raus kommt natürlich a=b=c

Faenôl

Bezug
        
Bezug
max Volumen bestimmen von Quad: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:14 Mo 20.06.2005
Autor: fussel1000

hallo,
wollte mich bedanken für die vielen HInweise.
Habt mir echt weiter geholfen ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de