www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - maximale Fläche bei Integral
maximale Fläche bei Integral < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

maximale Fläche bei Integral: Frage
Status: (Frage) beantwortet Status 
Datum: 14:10 So 24.04.2005
Autor: ChristinaB

Hey Leute

hab mal wieder einkleines Problem mit ner Teilaufgabe
Also:

Habe ne parabel mit der Gleichung [mm] P:y^2=-0.5*\wurzel{7}*(x-\wurzel{7}-\bruch{2.25}{0.5*\wurzel{7}}) [/mm]

Aufgabe:
Betrachtet sei nun eine Ursprungsgerade g, die im 1. und 3. Quadranten verläuft und ihr Schnittpunkt [mm] S(x_s;y_s) [/mm] mit der Parabel P im 1. Quadranten. Eine quadratische Pyramide sei nun so gedacht, dass ihre Spitze im Ursprung liegt, die mitte einer ihrer Grundseiten der Punkt S ist un der Diagonalen Schnittpunkt  M inihrer Grundfläche auf der x-Achse liegt. Zeigen sie, wie die Steigung der Geraden g so besimmt werden kann, dass das Volumen der Pyramide maximalwird!

Mein Ansatz:

Ich betrachte also das Dreieck AMS mit A(0;0) , [mm] M(x_s;0) [/mm] und [mm] S(x_s;y_s) [/mm]
Wenn das Volumen dieses einen Dreiecks max. wurd, dann wird doch auch das Volumen der gesamten Pyramide max. oder?
Also muss das Integral [mm] \integral_{0}^{x_s} [/mm] {g(x) dx} maximal sein und ich suche das [mm] x_s [/mm] (welches natürlich auch auf der Parabel liegt) für welches dieses integral max. wird. Daraus kann ich dann ja ganz einfach die Steigung berechnen.
Das [mm] \integral_{0}^{x_s} [/mm] {g(x)} dx ist gleich F(x). F(x) ist maximal wenn die ableitung f(x)=0 ist oder? also müsste ich doch meine geraden gleichung [mm] y=\bruch{y_s}{x_s}*x [/mm] nullsetzen um meine Integralgrenze zu bekommen,aber da kommt dann ja null raus und das kann ja irgendwie nit sein, oder??


oder (is mir gerade eingefallen) kann ich einfach den Flächeninhalt des Dreiecks A(x)= [mm] \bruch{x_s*y_s}{2} [/mm] nehmen und davon  max. ausrechnen, also [mm] \bruch{\wurzel{-0.5*\wurzel{7}*(x_s-\wurzel{7}-\bruch{2.25}{0.5*\wurzel{7}})}*x_s}{2} [/mm] =A(x) ableiten und dann nach [mm] x_s [/mm] auflösen??


Wär nett wenn sich jemand die zeit nimmt um mir zu helfen!

Gruß

Christina

        
Bezug
maximale Fläche bei Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 16:54 So 24.04.2005
Autor: Max

Hallo Christina,

leider wir die Pyramide nicht maximal, wenn das Dreieck maximal wird, da [mm] $A=\frac{1}{2}\cdot g\cdot [/mm] h$ und [mm] $V=\frac{1}{3} \cdot [/mm] h [mm] \cdot [/mm] G$ mit [mm] $G=2g^2$. [/mm] Damit ist es für $A$  egal, ob $g$ oder $h$ größer wird - für $V$ ist es wichtiger, dass $g$ größer wird als $h$, da $g$ quadratisch eingeht.

Gruß Max

Bezug
                
Bezug
maximale Fläche bei Integral: Rückfrage:so richtig?
Status: (Frage) beantwortet Status 
Datum: 19:06 So 24.04.2005
Autor: ChristinaB

Danke macht sinn,

Also muss ich jetzt die Ableitung von [mm] V(x_s)=\bruch{1}{3}*x_s*(2*y_s)^2 [/mm] bilden, diese dann gleich null setzen und nach [mm] x_s [/mm] auflösen und erhalte dann das [mm] x_s [/mm] für welches mein Pyramidenvolumen max wird, richtig? dann rechne ich das zugehörige [mm] y_s [/mm] aus und berechne die Steigung der Geraden mit [mm] m=\bruch{y_s}{x_s} [/mm] richtig?

Danke für die Hilfe!!

Gruß

Christina

Bezug
                        
Bezug
maximale Fläche bei Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:22 So 24.04.2005
Autor: Max

Ja, so müsste es richtig sein. Max



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de