maximale Kugel in Polyeder < Optimierung < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 20:49 Mi 29.11.2006 | Autor: | Alpha23 |
Aufgabe | Betrachten Sie das Polyeder [mm]\mathcal{P} := \left\{ x \in \IR : a_i^{T}x \leq b,i=1, ... , m \right\} [/mm]. In [mm]\mathcal{P}[/mm] soll eine möglichst große Kugel [mm]\mathcal{B}[/mm] mit Mittelpunkt [mm] x_c \in \mathfrak(P) [/mm] eingeschrieben werden, d.h.
[mm]\mathcal{B}=\left\{ x_c+u: ||u||_2 \leq r \right\}.[/mm]
Formulieren Sie diese Problemstellung als lineares Problem in [mm]x_c[/mm] und [mm] \mathit{r} [/mm].
|
Hallo!
Die Aufgabe sieht einfach aus (ist sie bestimmt auch), aber ich bin am Rumrätseln, was genau denn maximiert werden soll. Irgendwie schon der Radius der Kugel, aber normalerweise hat ein Maximierungsproblem die Form
[mm]\max{b^T x}[/mm] s.t. [mm] A^T x \leq c, x \geq 0 [/mm] .
Für die Nebenbedingungen sollte ja gelten, dass zum Beispiel [mm]a_i^T (x_c + u)[/mm], damit alle Kugelpunkte im Polyeder liegen, insbesondere gilt das dann auch für [mm]x_c[/mm].
Kann mir jemand einen Tip geben, wie ich mein [mm] \mathit{c} [/mm], [mm] \mathit{b} [/mm] und [mm] \mathit{A} [/mm] wählen kann? Danke schonmal im Voraus!
Gruß
Timo
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:20 Fr 01.12.2006 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|