maximaler Flächeninhalt < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:17 Do 28.08.2014 | Autor: | Mojo123 |
Aufgabe | gegeben ist die schar von Funktionen f mit f(x)=2k*x*e^-4x²
Die gerade x=v mit v>0 schneidet die x-Achse im Punkt V und den Graphen der Funktion f in W (eine senkrechte zum punkt V). mit dem Ursprung O als weiteren Eckpunkt ergibt sich ein Dreieck OVW.
Ermitteln sie für k>0 den Wert von v, für den der Flächeninhalt des Dreiecks OVW maximal ist. Berechnen sie diesen maximalen Flächeninhalt. |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Mir ist bewusst, dass bei dieser Aufgabe zunächst ein geeigneter Wert für den Parameter k gesucht wird wodurch im Anschluss ein maximaler Flächeninhalt berechnet werden muss, also muss ich eine neue Gleichung aufstellen, richtig?
mir fehlt allerdings jeglicher Ansatz, ich habe keine Ahnung wie ich aus den angegebenen Sachen einen Flächeninhalt berechnen soll.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:28 Do 28.08.2014 | Autor: | abakus |
> gegeben ist die schar von Funktionen f mit
> f(x)=2k*x*e^-4x²
>
> Die gerade x=v mit v>0 schneidet die x-Achse im Punkt V und
> den Graphen der Funktion f in W (eine senkrechte zum punkt
> V). mit dem Ursprung O als weiteren Eckpunkt ergibt sich
> ein Dreieck OVW.
> Ermitteln sie für k>0 den Wert von v, für den der
> Flächeninhalt des Dreiecks OVW maximal ist. Berechnen sie
> diesen maximalen Flächeninhalt.
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Mir ist bewusst, dass bei dieser Aufgabe zunächst ein
> geeigneter Wert für den Parameter k gesucht wird wodurch
> im Anschluss ein maximaler Flächeninhalt berechnet werden
> muss, also muss ich eine neue Gleichung aufstellen,
> richtig?
> mir fehlt allerdings jeglicher Ansatz, ich habe keine
> Ahnung wie ich aus den angegebenen Sachen einen
> Flächeninhalt berechnen soll.
Hallo,
der Flächeninhalt eines Dreiecks wird mit "ein Halb mal Grundseite mal Höhe" berechnet.
Ich empfehle dir, als Grundseite die Strecke von O nach V zu verwenden.
Gruß Abakus
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:42 Do 28.08.2014 | Autor: | Mojo123 |
Aufgabe | gegeben ist die schar von Funktionen f mit f(x)=2k*x*e^-4x²
Die gerade x=v mit v>0 schneidet die x-Achse im Punkt V und den Graphen der Funktion f in W (eine senkrechte zum punkt V). mit dem Ursprung O als weiteren Eckpunkt ergibt sich ein Dreieck OVW.
Ermitteln sie für k>0 den Wert von v, für den der Flächeninhalt des Dreiecks OVW maximal ist. Berechnen sie diesen maximalen Flächeninhalt. |
wie kann ich denn in die Gleichung für den Maximalen Flächeninhalt (A=1/2*g*h) meine Ausgangsgleichung ( f(x)=2k*x*e^-4x² ) einbauen? also wie komme ich auf die strecke von 0 zu V, die benötigt wird für die Grundseite (also g) und die Strecke zwischen W und V, die ja für h, also die höhe benötigt wird?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:57 Do 28.08.2014 | Autor: | Diophant |
Hallo Mojo123,
ich habe das Doppel zu deiner obigen Frage versteckt (beide Beiträge waren inhaltsgleich). Bitte stelle hier jede Frage nur einmal.
Außerdem würde ich dir gerne die Anregung geben, hier nicht nur Fragen mehr oder weniger ohne eigene Überlegungen einzustellen, sondern die gegebenen Antworten zu verarbeiten, dich damit gründlich auseinanderzusetzen und dich auch zurückzumelden, so dass wir wissen, ob eine Hilfestellung erfolgreich war oder nicht. Wir sind hier ein Forum, in welchem zumindest im Bereich Mathematik Lösungen schwerpunktmäßig im Dialog erarbeitet werden, so dass ein nachhaltiges Verständnis gefördert wird. Das erforder jedoch Eigeninitiative der Fragesteller.
Fertige Lösungen wollen wir hier bis auf berechtigte Ausnahmen jedoch keine geben.
Gruß, Diophant
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:13 Do 28.08.2014 | Autor: | rmix22 |
> gegeben ist die schar von Funktionen f mit
> f(x)=2k*x*e^-4x²
>
> Die gerade x=v mit v>0 schneidet die x-Achse im Punkt V und
> den Graphen der Funktion f in W (eine senkrechte zum punkt
> V). mit dem Ursprung O als weiteren Eckpunkt ergibt sich
> ein Dreieck OVW.
> Ermitteln sie für k>0 den Wert von v, für den der
> Flächeninhalt des Dreiecks OVW maximal ist. Berechnen sie
> diesen maximalen Flächeninhalt.
> wie kann ich denn in die Gleichung für den Maximalen
> Flächeninhalt (A=1/2*g*h) meine Ausgangsgleichung (
> f(x)=2k*x*e^-4x² ) einbauen?
Hast du dir schon eine Skizze gemacht und in dieser die Punkte O, V und W, aber auch die Länge v eingezeichnet? Du musst dazu nicht einmal den Graph von f(x) einzeichnen, es reicht, wenn du (k>0, v>0) berücksichtigst, dass sich W über V im ersten Quadranten befindet.
also wie komme ich auf die
> strecke von 0 zu V, die benötigt wird für die Grundseite
Ja. Welch Koordinaten wird denn der Punkt V haben, wenn er auf der Geraden x=v und der x-Achse liegt und wie weit ist dieser Punkt dann von O entfernt?
> (also g) und die Strecke zwischen W und V, die ja für h,
> also die höhe benötigt wird?
Na, welche x-Koordinate wird der Punkt W haben, wenn er laut Angabe auf einer Senkrechten (gemeint ist da wohl eine Parallele zur y-Achse) durch V liegt? Und die Höhe, also die y-Koordinate von W, wird dir dann doch die gegebene Funktionsgleichung verraten.
Da k für die Funktion nur ein Skalierungsfaktor ist, wird er keine Auswirkungen auf die das Ergebnis von v_max haben, wohl aber natürlich im Ausdruck für den maximalen Flächeninhalt wieder vorkommen.
Gruß RMix
|
|
|
|