www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - maximaler flächeninhalt
maximaler flächeninhalt < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

maximaler flächeninhalt : Frage
Status: (Frage) beantwortet Status 
Datum: 16:44 So 09.01.2005
Autor: melchen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

hallo ich habe mal eine frage ich soll folgende aufgabe lösen: Gegeben ist die Funktion f mit f(x) = x² - 1 / x² + 1. Zeichne den Graphen von f einschließlich Asymptote. Welches Rechteck mit achsenparallelen Seiten, das zwischen Asymptote und dem Graphen von f liegt, hat maximalen Flächeninhalt? mein problem is ich komm allein schon beim zeichnen nich klar da ich nicht weiss wo genau sich das dreieck im graphen befindet.. wär echt lieb wenn ihr mir schnell mit ein paar tipps weiterhelfen könntet
vielen dank im vorraus



        
Bezug
maximaler flächeninhalt : Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:54 So 09.01.2005
Autor: melchen

äh ich meine natürlich das rechteck

Bezug
        
Bezug
maximaler flächeninhalt : Antwort
Status: (Antwort) fertig Status 
Datum: 17:15 So 09.01.2005
Autor: Andi

Hallo Melchen,

zunächst einmal ein herzliches Willkommen im Matheraum [willkommenmr].
... auch wir würden uns über ein paar (nette) Grußworte am Anfang deiner Frage freuen.

> hallo ich habe mal eine frage ich soll folgende aufgabe
> lösen: Gegeben ist die Funktion f mit f(x) = x² - 1 / x² +
> 1. Zeichne den Graphen von f einschließlich Asymptote.

[mm] f(x)=\bruch{x^2-1}{x^2+1}[/mm]

So schauts doch schon viel besser aus !!!
Probier doch auch mal den Formeleditor aus!

So nun zeichne doch mal den Graphen mit der Asympote ?

Weißt du was eine Asymptote ist ?

> Welches Rechteck mit achsenparallelen Seiten, das zwischen
> Asymptote und dem Graphen von f liegt, hat maximalen
> Flächeninhalt? mein problem is ich komm allein schon beim
> zeichnen nich klar da ich nicht weiss wo genau sich das
> dreieck im graphen befindet.. wär echt lieb wenn ihr mir

Na du sollst ja auch erst ausrechnen wo das Rechteck liegt.
Und Zwar suchen wir ein Rechteck mit maximalem Flächeninhalt,
das zwischen der Aysamptote und dem Graphen liegt.

Der Flächeninhalt eines Rechtecks ist [mm] A=a*b [/mm]

Betrachten wir nur eine Hälfte des Rechtecks dann stellen wir fest, dass die X Koordinate eines Punktes auf dem Graphen die Breite unsere gesuchten Rechtecks ist. Und wenn wir die Y Koordinate ein wenig verändern erhalten wir auch die Länge des Rechtecks.
Und zwar ist [mm] b=-f(x)+c [/mm] wobei das c aus der Asymptotengleichung [mm] y=c [/mm] kommt. In unserem Fall ist das c=1, wie man leicht sieht.

Ist bis hier alles klar? Hast du schon die Zeichnung?

Versuche nun selber ein wenig rumzubasteln. Und melde dich mit neuen Fragen und Ideen.

Mit freundlichen Grüßen,
Andi


Bezug
        
Bezug
maximaler flächeninhalt : Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:25 So 09.01.2005
Autor: melchen

hey danke schön sorry war nur sehr genervt das ichs nich hinkriege deshalb keine grossen begrüssungsfloskeln.. aber vielen dank für die hilfe

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de