www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - maximum-likelidhood
maximum-likelidhood < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

maximum-likelidhood: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:53 Do 17.11.2005
Autor: mariposa

Hi, ich möchte die Funktion [mm] P(N)=\bruch {\vektor {K\\k}* \vektor {N-K\\n-k}}{\vektor{N\\n}} [/mm] maximieren.
Das geht nicht, in dem ich die erste Ableitung bilde, weil die Fakultäten nur auf [mm] \IN [/mm] definiert sind und ich also keine Differenzierbarkeit in [mm] \IR [/mm] habe.
Wenn ich [mm] \bruch{P(N+1)}{P(N)} [/mm] rechne, erhalte ich [mm] \bruch{N+1-k}{N+1}=1. [/mm]
Das bringt mich aber irgendwie nicht weiter.
Wenn ich P(N+1) -P(N) =  rechne, erhalte ich nk-k = 0 also k=0 oder n=1
bzw. (N-K)!= 0.
Aber ich weiß einfach nicht, wie ich weiterrechnen soll.
Vielen Dank
Maike

        
Bezug
maximum-likelidhood: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:13 Fr 18.11.2005
Autor: Astrid

Hallo Maike,

>  Wenn ich P(N+1) -P(N) =  rechne, erhalte ich nk-k = 0 also
> k=0 oder n=1
>  bzw. (N-K)!= 0.

Wie kommst du denn auf $=0$? Ich würde sagen, dass dieser Ansatz am vielversprechendsten ist. (Ich weiß es aber nicht, denn ich habe es nicht durchgerechnet.) Du wolltest bestimmt zeigen, dass $P(N+1)-P(N)$ ab einem bestimmten Wert immer negativ ist, oder? Hast du irgendwelche Zahlenwerte vorgegeben, oder sollst du die Aufgabe ganz allgemein lösen?

Viele Grüße
Astrid

Bezug
        
Bezug
maximum-likelidhood: Antwort
Status: (Antwort) fertig Status 
Datum: 17:39 Fr 18.11.2005
Autor: Astrid

Hallo nochmals Maike,

> Hi, ich möchte die Funktion [mm]P(N)=\bruch {\vektor {K\\k}* \vektor {N-K\\n-k}}{\vektor{N\\n}}[/mm]
> maximieren.
>  Das geht nicht, in dem ich die erste Ableitung bilde, weil
> die Fakultäten nur auf [mm]\IN[/mm] definiert sind und ich also
> keine Differenzierbarkeit in [mm]\IR[/mm] habe.
> Wenn ich [mm]\bruch{P(N+1)}{P(N)}[/mm] rechne, erhalte ich
> [mm]\bruch{N+1-k}{N+1}=1.[/mm]
>  Das bringt mich aber irgendwie nicht weiter.
>  Wenn ich P(N+1) -P(N) =  rechne, erhalte ich nk-k = 0 also
> k=0 oder n=1
>  bzw. (N-K)!= 0.

Ich habe den letzten Ansatz nochmal versucht, durchzurechnen. Ich habe versucht, eine Vorschrift für $N$ zu finden, so dass
$P(N+1)-P(N) [mm] \leq [/mm] 0$. Nach einigen Rechenschritten komme ich schließlich darauf, dass $N [mm] \geq [/mm] n-1$ sein muss, dass heißt ab $N=n-1$ ist die Funktion wieder monoton fallend, davor ist sie monoton steigend. Ich kann aber nicht ausschließen, dass ich mich verrechnet habt... [ohwell] Diese Rechnung kann ich hier leider schlecht eintippen... ;-) Vielleicht hilft's dir trotzdem!

Viele Grüße
Astrid

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de