www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - mehrfach Induktion zeigen
mehrfach Induktion zeigen < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

mehrfach Induktion zeigen: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 16:01 So 20.03.2016
Autor: SinistresFlagellum

Aufgabe
Wie beweist man eine Aussage [mm] $A(a_{1}, a_{2}, \cdots [/mm] , [mm] a_{n})$, [/mm] mit [mm] $a_{1}, a_{2}, \cdots [/mm] , [mm] a_{n} \in \IN$, [/mm] mittels vollständiger Induktion?

Aussagen der Form [mm] $A(a_{1})$ [/mm] sind trivial.

Auch Aussagen der Form [mm] $A(a_{1}, a_{2})$ [/mm] gehen noch.
Man zeigt:

1) $A(0,0)$
2) [mm] $A(a_{1}, a_{2}) \Rightarrow A(a_{1} [/mm] + 1, [mm] a_{2}) \forall a_{1}, a_{2} \in \IN [/mm] $
3) [mm] $A(a_{1}, a_{2}) \Rightarrow A(a_{1}, a_{2} [/mm] + 1) [mm] \forall a_{1}, a_{2} \in \IN [/mm] $

Wie geht man aber nun bei endlich vielen natürliche Zahlen vor?

Ich vermute mal:
1) $A(0, 0, [mm] \cdots, [/mm] 0)$

Muss man jetzt alle Variablen festhalten bis auf eine Einzige und über diese dann eine Induktion bilden? Also insgesamt müsste man dann doch $n$-verschiedene Induktionen zeigen?

        
Bezug
mehrfach Induktion zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:18 So 20.03.2016
Autor: tobit09

Hallo SinistresFlagellum!


> Wie beweist man eine Aussage [mm]A(a_{1}, a_{2}, \cdots , a_{n})[/mm],
> mit [mm]a_{1}, a_{2}, \cdots , a_{n} \in \IN[/mm], mittels
> vollständiger Induktion?

Da gibt es verschiedene denkbare Methoden. Was jeweils sinnvoll ist, hängt von A ab. Denkst du an eine bestimmte Aussage(form) [mm] $A(a_1,\ldots,a_n)$? [/mm]


>  Aussagen der Form [mm]A(a_{1})[/mm] sind trivial.
>  
> Auch Aussagen der Form [mm]A(a_{1}, a_{2})[/mm] gehen noch.
>  Man zeigt:
>  
> 1) [mm]A(0,0)[/mm]
>  2) [mm]A(a_{1}, a_{2}) \Rightarrow A(a_{1} + 1, a_{2}) \forall a_{1}, a_{2} \in \IN[/mm]
>  
> 3) [mm]A(a_{1}, a_{2}) \Rightarrow A(a_{1}, a_{2} + 1) \forall a_{1}, a_{2} \in \IN[/mm]

Ja, das ist eine korrekte Methode. Wenn man 1), 2) und 3) nachgewiesen hat, folgt [mm] $A(a_1,a_2)$ [/mm] für alle natürlichen Zahlen [mm] $a_1,a_2$. [/mm]


Weitere (ähnliche aber nicht völlig identische) denkbare Methoden sind z.B.:

(ii) Variante deiner Idee:
Es genügt, bei 2) nur [mm] $a_2=0$ [/mm] anstelle aller natürlichen Zahlen [mm] $a_2$ [/mm] zu betrachten.

(iii) Induktion nach der Summe [mm] $a_1+a_2$: [/mm]
Zeige per Induktion nach s, dass für alle natürlichen Zahlen s gilt: Für alle natürlichen Zahlen [mm] $a_1,a_2$ [/mm] mit [mm] $a_1+a_2=s$ [/mm] gilt [mm] $A(a_1,a_2)$. [/mm]

(iv) Induktion nach einer der Variablen:
Zeige per Induktion nach [mm] $a_1$, [/mm] dass für alle natürlichen Zahlen [mm] $a_1$ [/mm] gilt: Für alle natürlichen Zahlen [mm] $a_2$ [/mm] gilt [mm] $A(a_1,a_2)$. [/mm]
Gegebenenfalls ist im Induktionsanfang und/oder im Induktionsschritt der Induktion nach [mm] $a_1$ [/mm] jeweils eine Induktion nach [mm] $a_2$ [/mm] denkbar.


> Wie geht man aber nun bei endlich vielen natürliche Zahlen
> vor?
>  
> Ich vermute mal:
>  1) [mm]A(0, 0, \cdots, 0)[/mm]
>  
> Muss man jetzt alle Variablen festhalten bis auf eine
> Einzige und über diese dann eine Induktion bilden? Also
> insgesamt müsste man dann doch [mm]n[/mm]-verschiedene Induktionen
> zeigen?

Alle vier Methoden lassen sich auf mehr als zwei Variablen verallgemeinern.

Je größer n ist, desto mehr ist typischerweise zu zeigen; bei der naheliegenden Verallgemeinerung deiner Idee hat man in der Tat n+1 viele Einzelaussagen zu verifizieren.

Aber wie gesagt: Ob dieses Vorgehen im Einzelfall überhaupt sinnvoll ist, hängt von A ab.


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de