www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - mehrmalige partielle Intergration
mehrmalige partielle Intergration < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

mehrmalige partielle Intergration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:03 Di 06.07.2004
Autor: andreas99

Hi,

ich hab Probleme bei einer Aufgabe die mit Hilfe zweimaliger partieller Integration zu lösen sein soll.

[mm] \integral_{}^{} {e^x \cdot cos (x) dx} [/mm]

Die erste partielle Integration hab ich so gemacht:

[mm] u(x)=e^x [/mm] , v'(x)=cos x , [mm] u'(x)=e^x [/mm] , v(x)=sin x

[mm] \integral_{}^{} {e^x \cdot cos (x) dx} [/mm] = [mm] e^x \cdot [/mm] sin x [mm] \cdot \integral_{}^{} {e^x \cdot sin (x) dx} [/mm]

Ist die erste Integration so richtig? Jetzt hab ich noch eine ganze Menge andere Integrationen gemacht, aber ich bekomme keine Form welche mit dem im Lösungsverzeichnis angegebene Stammintegral übereinstimmt.

Ergebnis soll sein:

[mm] F(x)=\bruch{1}{2} \cdot [/mm] (sin x + cos x)+C

Irgendwelche Lösungstips?

Gruß
Andreas

        
Bezug
mehrmalige partielle Intergration: Antwort
Status: (Antwort) fertig Status 
Datum: 12:51 Di 06.07.2004
Autor: sijaboeh

Hi

>ich hab Probleme bei einer Aufgabe die mit Hilfe zweimaliger partieller Integration zu lösen sein soll.
>Jetzt hab ich noch eine ganze Menge andere Integrationen gemacht, aber ich bekomme keine Form welche mit dem im >Lösungsverzeichnis angegebene Stammintegral übereinstimmt.

Ja, da ist der Hund begraben !
Wenn du 2-mal Integrierst, so wie du es versucht hast, bekommst du auch keine andere Form:

sin -> cos -> sin
e -> e -> e

>Irgendwelche Lösungstips?
Die Lösung: Phönix aus der Asche !


$ [mm] \integral_{}^{} {e^x \cdot cos(x) dx} [/mm] $ = $ [mm] e^x \cdot [/mm] sin(x) $ - $ [mm] \integral_{}^{} {e^x \cdot sin(x) dx} [/mm] $
$ [mm] \integral_{}^{} {e^x \cdot sin(x) dx} [/mm] $ = $ [mm] -e^x \cdot [/mm] cos(x) $ + $ [mm] \integral_{}^{} {e^x \cdot cos(x) dx} [/mm] $
Einsetzen ergibt:
$ [mm] \integral_{}^{} {e^x \cdot cos(x) dx} [/mm] $ = $ [mm] e^x \cdot [/mm] sin(x) $ + $ [mm] e^x \cdot [/mm] cos(x) $ - $ [mm] \integral_{}^{} {e^x \cdot cos(x) dx} [/mm] $
Umformen:
$ 2 [mm] \cdot \integral_{}^{} {e^x \cdot cos(x) dx} [/mm] $ = $ [mm] e^x \cdot [/mm] sin(x) + [mm] e^x \cdot [/mm] cos(x) $
Lösung :

$ [mm] \integral_{}^{} {e^x \cdot cos(x) dx} [/mm] $ = [mm] $\bruch{1}{2}$ [/mm] ( $ [mm] e^x \cdot [/mm] sin(x) + [mm] e^x \cdot [/mm] cos(x) $ ) + C

Der Name bezeichnet die Technik, auf die Lösung schliessen zu können ohne das Integral wirklich direkt berechnet zu haben.
cu

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de