www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - mengenwertige Funktionen
mengenwertige Funktionen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

mengenwertige Funktionen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:39 So 18.05.2008
Autor: Riley

Aufgabe
X sei ein Hilbertraum. Zeige:
Ein Operator T: X [mm] \rightarrow [/mm] X ist sicher nicht expansiv genau dann wenn T die Resolvente eines monotonen Operators F: X [mm] \rightarrow 2^X [/mm] ist (F ist also eine mengenwertige Funktion).

Guten Morgen,
ich hab noch ein paar Fragen :-)
Also dass T sicher nicht expansiv ist, bedeutet ja:
[mm] \| [/mm] Tx - Ty [mm] \|^2 \leq [/mm] <x-y, Tx-Ty> [mm] \forall [/mm] x,y [mm] \in [/mm] X.

Dass T die Resolvente von F ist bedeutet: T = [mm] (I+F)^{-1} [/mm] und dass F monoton ist:

[mm]
Für die Hinrichtung habe ich nun so angefangen:

T sei sicher nicht expansiv, dann folgt:

0 [mm] \leq \|(I+F)^{-1} [/mm] x - [mm] (I+F)^{-1} [/mm] y [mm] \| \leq [/mm] <x-y, [mm] (I+F)^{-1} [/mm] x - [mm] (I+F)^{-1} [/mm] y >
Wie bekomme ich nun in dem hinteren Argument etwas, dass diese monoton Bedingung erfüllt ist ?

[mm] (I+F)^{-1} [/mm] x [mm] \in [/mm] F(x) gilt ja wohl nicht, oder?
Oder wie kann man das noch auseinandernehmen?
Freu mich über alle Denkanstöße und Hinweise! ;)

Viele Grüße,
Riley

        
Bezug
mengenwertige Funktionen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:46 Di 20.05.2008
Autor: Riley

Hallo,
ich habe in einem Paper von J. Eckstein einen kleinen Ansatz gefunden, allerdings ist mir das noch nicht so ganz klar (leider sind dort die Notationen auch total anders). Also es geht darum diese Äquivalenz zu zeigen:

(i) [mm] \|Tx [/mm] - Ty [mm] \|^2 [/mm] <= <x-y,Tx-Ty> [mm] \forall [/mm] x,y [mm] \in [/mm] X (X ist ein Hilbertraum und T also streng nicht-expansiv)
(ii) [mm] T=J_F [/mm] = (I+F)^(-1) für einen monotonen Operator F: X -> [mm] 2^X [/mm] (ist also mengenwertig).

Anscheinend kann man nun die Rückrichtung beweisen, in dem man zeigt, dass F monoton ist genau dann wenn [mm] J_F [/mm] strikt nicht expansiv ist.
F monoton bedeutet ja wie gehabt:
< [mm] x_1 [/mm] - [mm] x_2, y_1 [/mm] - [mm] y_2> \geq [/mm] 0 [mm] \forall y_1 \in F(x_1), y_2 \in F(x_2). [/mm]

Wenn man nun auf beiden Seiten [mm] \|x_1 [/mm] - [mm] x_2 \|^2 [/mm] addiert, kommt man zu
< [mm] x_1 [/mm] - [mm] x_2, y_1 [/mm] - [mm] y_2, x_1 [/mm] - [mm] x_2> \geq \| x_1 [/mm] - [mm] x_2 \|^2 \forall y_1 \in F(x_1), y_2 \in F(x_2). [/mm]

Warum ist das nun äquivalent dazu, dass [mm] J_F [/mm] = [mm] (I+F)^{-1} [/mm] strikt nicht expansiv ist? Das würde ja bedeutet, dass gilt:

[mm] \| (I+F)^{-1} [/mm] x - [mm] (I+F)^{-1} [/mm] y [mm] \|^2 \geq [/mm] <x-y, [mm] (I+F)^{-1}x [/mm] - [mm] (I+F)^{-1} [/mm] y > ... ??

Wär super, wenn mir hier jemand weiterhelfen könnte!!

Viele Grüße,
Riley

PS: und bringt es etwas für die Hinrichtung [mm] T=(I+F)^{-1} [/mm] nach F aufzulösen, damit man vielleicht sieht wie man F wählen muss, also angenommen T ist invertierbar....

Bezug
                
Bezug
mengenwertige Funktionen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Sa 24.05.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
mengenwertige Funktionen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Fr 23.05.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de