www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - messbare funktionen
messbare funktionen < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

messbare funktionen: 1/f messbar wenn f messbar
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:24 Fr 16.11.2007
Autor: jumape

Aufgabe
sei f eine a-at messbare funktion. f:x->R und (X,A,µ) der Maßraum.
eigen Sie dass 1/f auch a-at maessbar ist falls f(x) nicht 0 für alle x aus X

ich habe leider gar keine ahnung wie man das machen soll.
ich dachte wenn man sich eine neue funktion definiert g=1/f und sagt dann g(inv) soll dann in der sigmaalgebra sein wenn f(inv) in der sigmaalgebra ist, könnte man dass vielleicht herleiten bin dabei aber kläglich gescheitert

        
Bezug
messbare funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:59 Fr 16.11.2007
Autor: SEcki


> sei f eine a-at messbare funktion. f:x->R und (X,A,µ) der
> Maßraum.
>  eigen Sie dass 1/f auch a-at maessbar ist falls f(x) nicht
> 0 für alle x aus X

Was ist "at"? Ist R die reelen Zahlen? Dort die Borel-Sigma-Algebra?

>  ich habe leider gar keine ahnung wie man das machen soll.
>  ich dachte wenn man sich eine neue funktion definiert
> g=1/f und sagt dann g(inv) soll dann in der sigmaalgebra
> sein wenn f(inv) in der sigmaalgebra ist, könnte man dass
> vielleicht herleiten bin dabei aber kläglich gescheitert

was meinst du mit g(inv)? Falls obiges zutrifft: [m]x\mapsto 1/x[/m] ist auf [m]\IR\{0}[/m] stetig.

SEcki

Bezug
                
Bezug
messbare funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:40 Sa 17.11.2007
Autor: verkackt

Hi SEcki und alle andere
Ich habe dieselbe Aufgabe zu bearbeiten. Mit a-at-messbar ist [mm] \mathcal{A}-\mathcal{A}_{t} [/mm] -messbar gemeint, wobei [mm] \mathcal{A} [/mm] ist die Sigma-Algebra und und  [mm] \mathcal{A}_{t} [/mm] die Borel-Sigma-Algebra ist.
Man soll also zeigen, dass für alle B [mm] \in \mathcal{A}_{t} [/mm] gilt [mm] (\bruch{1}{f})^{-1}(B) \in \mathcal{A} [/mm] .Ich glaube dafür sollte man [mm] (\bruch{1}{f})^{-1} [/mm] so umformen, bis man einen Ausdruck in Form [mm] f^{-1} [/mm] bzw. abhängig von [mm] f^{-1} [/mm] hat.Aber wie weiß ich nicht.Es wäre nett, wenn jemand uns dabei helfen könnte.
Gruß V.

Bezug
                        
Bezug
messbare funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:16 Sa 17.11.2007
Autor: r4nt4npl4n

hey

du musst [mm] \frac{1}{f} [/mm] so umschreiben, dass du dann diesen Satz verwenden kannst: Wenn f:X [mm] \to \IR ~~\mathcal{A}-messbar [/mm] ist, so ist auch [mm] \lambda*f ~~\mathcal{A}-messbar [/mm]

Bezug
                                
Bezug
messbare funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:09 So 18.11.2007
Autor: jumape

danke, und wie mache ich das, dass ist mir nicht so ganz klar, dakommt dann nur f^-2 raus dass hilft mir doch auch nicht weiter oder stehe ich total auf dem schlauch

Bezug
                                        
Bezug
messbare funktionen: Idee
Status: (Antwort) fertig Status 
Datum: 13:57 So 18.11.2007
Autor: verkackt

Hi Jumape,
Mein Tipp:definiere  g(x)= [mm] \bruch{1}{x} [/mm] und zeige, dass g [mm] \circ [/mm] f [mm] =f^{-1} [/mm] messbar ist!
Gruß V.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de