www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - metrischer raum, vollständig
metrischer raum, vollständig < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

metrischer raum, vollständig: Tipp
Status: (Frage) beantwortet Status 
Datum: 12:25 So 22.01.2006
Autor: Angie

Hallo,

Ich soll zeigen, dass der Folgenraum [mm] ({0,2})^{N_{0}} [/mm] ( sollen mengenklammern sein) mit der Metrik:
[mm] d((a_{n})_{0}^{\infty},((b_{n})_{0}^{\infty}))= \summe_{n=0}^{\infty} 2^{-n} |a_{n}-b_{n}| [/mm] vollständig ist.

Ich müsste also zeigen, dass jede Cauchyfolge darin konvergiert.
Mir ist nur leider gar nicht klar, wie ich das anstellen soll und ich wäre für einen kleinen Tipp sehr dankbar!

        
Bezug
metrischer raum, vollständig: Antwort
Status: (Antwort) fertig Status 
Datum: 13:40 So 22.01.2006
Autor: Hanno

Hallo.

> Mir ist nur leider gar nicht klar, wie ich das anstellen soll und ich wäre für einen kleinen Tipp sehr dankbar!

Du könntest versuchen, den Grenzwert zu konstruieren. Zur Bestimmung der ersten $k$ Folgenglieder wählst du ein spätes Folgenglied in der dir gegebenen Cauchy-Folge [von Folgen] aus, sodass es sich von den folgenden Folgen um weniger als [mm] $2^{-k}$ [/mm] unterscheidet [bzgl. der gegebenen Metrik]. Dann müssen alle folgenden Folgen mit der gewählten Folge in den ersten $k$ Folgengliedern übereinstimmen.
So konstruierst du also eine neue Folge. Zu zeigen, dass diese der Grenzwert der dir gegebenen Folgen-"Folge" ist, ist dann nicht mehr schwierig.

Versuchst du es einmal?

Liebe Grüße,
Hanno

Bezug
                
Bezug
metrischer raum, vollständig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:10 So 22.01.2006
Autor: Angie

Vielen Dank für deine Antwort,
ich müsste also einen Grenzwert (eine Folge) konstruieren und dann zeigen, dass die Folge der Grenzwert der Cauchyfolge (von Folgen) ist. Habe ich dann damit auch gezeigt, dass wirklich alle Cauchyfolgen konvergieren?
Ich verstehe aber nicht ganz deine Erklärung wie ich den Grenzwert konstruieren soll...

Bezug
                        
Bezug
metrischer raum, vollständig: Antwort
Status: (Antwort) fertig Status 
Datum: 16:12 So 22.01.2006
Autor: Hanno

Hallo.

> ich müsste also einen Grenzwert (eine Folge) konstruieren und dann zeigen, dass die Folge der Grenzwert der Cauchyfolge (von Folgen) ist.

Genau.

> Habe ich dann damit auch gezeigt, dass wirklich alle Cauchyfolgen konvergieren?

Ja, denn die betrachtete Cauchy-Folge war beliebig gewählt.


> Ich verstehe aber nicht ganz deine Erklärung wie ich den Grenzwert konstruieren soll...

Was genau verstehst du nicht?

Anschaulich: da eine Cauchy-Folge vorliegt, unterscheiden sich die Glieder immer weniger; irgendwann unterscheiden sie sich die Folgen so wenig, dass sie in einer vorher gewählten Anzahl der ersten Folgenglieder übereinstimmen müssen.

Formeller: Es sei [mm] $((f^n_{i})_{i\in \IN})_{n\in \IN}$ [/mm] die gegebene Cauchy-Folge von Folgen [mm] $(f^n_i)_{i\in \IN}$. [/mm] Für ein [mm] $k\in\IN_0$ [/mm] existiert nun ein [mm] $n_k\in\IN$ [/mm] so, dass [mm] $d(f^{m},f^{n_k})<2^{-k}$ [/mm] für alle [mm] $m\geq n_k$. [/mm] Daraus folgt [mm] $f^m_{k} [/mm] = [mm] f^{n_k}_{k}$ [/mm] für alle [mm] $m\geq n_k$, [/mm] da anderenfalls [mm] $d(f^m_{k},f^{n_k}_{k})\geq 2^{-k}|f^m_{k}-f^{n_k}_{k}|\geq 2^{-k}$ [/mm] wäre - Widerspruch.
Ab [mm] $f^{n_k}$ [/mm] stimmen also alle Folgen in Folgenglieder $k$ (und logischer weise auch in allen vorangegangenen) überein.


Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de