min(b) = \cap b < axiomatisch < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:36 Do 03.05.2012 | Autor: | marc1601 |
Aufgabe | Sei $n$ eine natürliche Zahl. Zeigen Sie, dass für jede nichtleere Teilmenge $b [mm] \subseteq [/mm] n$ gilt: [mm] $\cap [/mm] b = [mm] \min(b)$ [/mm] |
Hallo zusammen,
mir bleibt vom obigen Beweis nur noch zu zeigen, dass [mm] $\cap [/mm] b [mm] \in [/mm] b$ gilt. Der Rest folgt dann so: Ist $x [mm] \in [/mm] b$ beliebig, so sind [mm] $\cap [/mm] b$ und $x$ natürliche Zahlen (haben in der VL gezeigt, dass Elemente natürlicher Zahlen wieder natürliche Zahlen sind) und es gilt [mm] $\cap [/mm] b [mm] \subseteq [/mm] x$ nach Definition von [mm] $\cap [/mm] b$. In einer anderen Aufgabe habe ich dann schon gezeigt, dass in diesem Fall dann [mm] $\cap [/mm] b [mm] \leq [/mm] x$ gilt, womit [mm] $\cap [/mm] b$ dann untere Schranke für $b$ ist. Mit dem noch fehlenden wäre dann die Aufgabe gezeigt.
Irgendwie habe ich da einen Hänger - es sollte ja eigentlich klar sein. Vielleicht kann man auch allgemein zeigen, dass [mm] $\cap [/mm] b$ eine natürliche Zahl sein muss und dann die Annahme [mm] $\cap [/mm] b > n$ zum Widerspruch führen, aber da bin ich auch noch nicht weiter gekommen.
Wäre über Hilfe sehr dankbar.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:14 Do 03.05.2012 | Autor: | tobit09 |
Hallo Marc,
zeige beide Inklusionen (Teilmengenbeziehungen) der behaupteten Gleichheit getrennt.
Viele Grüße
Tobias
|
|
|
|