www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Graphentheorie" - minimale laufzeit für paramet.
minimale laufzeit für paramet. < Graphentheorie < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

minimale laufzeit für paramet.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:58 Do 15.05.2008
Autor: die_conny

Aufgabe
Gegeben seien Graphenalgorithmen mit den unten angegebenen Laufzeiten. Dabei ist n die Anzahl der Knoten, m die Anzahl der Kanten und k ein Parameter ,der von n und m abhängt und im jeweiligen Algorithmus bestimmt wird. Wie muss k jeweils gewählt werden, damit die Algorithmen asymptotisch minimale Laufzeit haben?

a) O [mm] (\bruch{n^3}{k} [/mm] + knm )
b) O (nk + [mm] \bruch{m}{k} [/mm] )
c) O [mm] (\bruch{m log(n)}{log(k)} [/mm] + [mm] \bruch{nk log(n)}{log(k)} [/mm] )

Hallo!

Also ich bin bei a und b folgendermaßen vorgegangen:

aufgabe a) :

Also ich habe [mm] \bruch{n^3}{k} [/mm] + knm nach k abgeleitet und erhalte [mm] \bruch{-n^3}{k^2} [/mm] + nm

wenn ich das ganze 0 setze, erhalte ich 2 mögliche lösungen für k:

k1 = [mm] \bruch{n}{\wurzel{m}} [/mm] und k2 = - [mm] \bruch{n}{\wurzel{m}} [/mm]
und dann habe ich meine erste ableitung noch einmal nach k abgeleitet und meine k1 und k2 dann eingesetzt.

2. ableitung nach k : [mm] \bruch{2n^3}{k^3} [/mm]

wenn ich dann k1 und k2 einsetze, dann ist die 2. ableitung für k1 größer 0 => Minimum

und für k2 ist sie kleiner 0 => Maximum

=> mein k1 ist das gesuchte k


aufgabe b):

Also da habe ich das ganze wie bei aufgabe a gemacht, also erstmal nach k abgeleitet und erhalte:

n - [mm] \bruch{m}{k^2} [/mm]

nun habe ich auch hier das ganze 0 gesetzt und erhalte als lösung für k:

[mm] k_{1/2} [/mm] = [mm] \pm \wurzel{m/n} [/mm]

dann habe ich ebenfalls die 2. ableitung gebildet und erhalte:
[mm] \bruch{2m}{k^3} [/mm]

wenn ih nun k1 bzw. k2 einsetze, ist die 2. ableitung für k1 größer 0 => minimum

für k2 ist sie kleiner 0 => Maximum

=> k1 ist das gesuchte k
(k1 ist die lösung mit dem +)



So, jetzt hatten wir zu dem ganzen aber keine Übung und auch keine beispiele, daher wollte ich fragen, ob das ganze so überhaupt richtig ist vom lösungsweg her und wenn ja, ob meine ergebnisse so in ordnung sind?
(wenn die vorgehensweise falsch ist, wie könnte ich das dann machen? )


Und zur Aufgabe c) habe ich leider noch nicht wirklich einen Ansatz. Eine Ableitung zu bilden, und dann nach k umzustellen, funktioniert ja hier leider nicht besonders gut (und das soll hier wohl auch anders gemacht werden, wenn ich den professor richtig verstanden habe).
Ich hatte mir zuerst überlegt, dass, wenn k n ist, sich dann ja das log n herauskürzen würde und ich hätte eine laufzeit von m + [mm] n^2 [/mm] (es sei denn n=1...)
Oder ich könnte das k sehr nah an 0 heranbringen, denn dann wird logk immer größer (und somit der bruch immer kleiner) und auch nk logn wird dann sehr klein.
Aber da k von m und n abhängt, weiß ich nicht genau, wie ich das richtig darstellen kann...

Könnte mir hier jemand weiterhelfen?


Vielen Dank im Voraus, die_conny



        
Bezug
minimale laufzeit für paramet.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Fr 16.05.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de