www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - minimales Volumen
minimales Volumen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

minimales Volumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:42 Mi 10.09.2008
Autor: robertl

Aufgabe
Der Graph [mm] f(x)=\sin(x) [/mm] rotiert um die Gerade g(x)=c      mit   [mm] $0\le c\le [/mm] 1$ für  [mm] x\in[0;\pi] [/mm]  . Bestimmen sie c so ,dass der entstehende Rotationskörper minimalen Volumen hat.

ich komme infach nicht weiter muss ich hier die Differenzfunktion bilden und dann das Volumen berechnen ,dass habe ich gemacht und bin auf  
V= 2*pi -2c*pi gekommen mein problem nun ist aber wie bekomme ich das minimale volumen raus   für  V´(c) BEKOMME ich -2*pi hmm und was habe ich nun damit? da ist kein Tiefpunkt oder Hochpunkt.
kan mir wer helfen bitte

        
Bezug
minimales Volumen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:11 Mi 10.09.2008
Autor: Somebody


> Der Graph [mm]f(x)=\sin(x)[/mm] rotiert um die Gerade g(x)=c      
> mit   [mm]0\le c\le 1[/mm] für  [mm]x\in[0;\pi][/mm]  . Bestimmen sie c so
> ,dass der entstehende Rotationskörper minimalen Volumen
> hat.
>  ich komme infach nicht weiter muss ich hier die
> Differenzfunktion bilden und dann das Volumen berechnen
> ,dass habe ich gemacht und bin auf  
> V= 2*pi -2c*pi gekommen

[notok] So einfach geht das nicht. Du musst ja $c$ so wählen, dass der Wert des []folgenden Integrals möglichst klein wird:

[mm]V(c) := \pi \integral_0^\pi \left(\sin(x)-c\right)^2\; dx[/mm]

Wenn Du dieses Integral ausrechnest, siehst Du, dass es sich bei $V(c)$ um eine quadratische Funktion von $c$ handelt. Der Graph ist eine nach oben geöffnete quadratische Parabel. Es sollte also nicht allzu schwierig sein, hier einen Tiefpunkt zu finden.

P.S: Der LaTeX-Renderer des Forums scheint zur Zeit ein Problem zu haben, so dass Du die obige Formel für das Integral wohl vorerst nicht so gut wirst lesen können ;-)

Bezug
                
Bezug
minimales Volumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:28 Mi 10.09.2008
Autor: robertl

Aufgabe
danke^

hmm ich kann das echt nicht lesen xD
also ist V = pi * Integrall von 0-pi der funktion  [mm] (sin(x)-c)^2 [/mm] dx???

hmm und was ist dan  [mm] (sin(x))^2 [/mm] integriert also was ist die Stammfunktion von  [mm] (sin(x))^2 [/mm]     ist das dan    -cos [mm] x^2 [/mm] ????

Bezug
                        
Bezug
minimales Volumen: partielle Integration
Status: (Antwort) fertig Status 
Datum: 18:31 Mi 10.09.2008
Autor: Loddar

Hallo Robert!


Die Stammfunktion von [mm] $\sin^2(x)$ [/mm] ermittelt man am besten über partielle Integration, indem man wie folgt zerlegt:
[mm] $$\sin^2(x) [/mm] \ = \ [mm] \sin(x)*\sin(x)$$ [/mm]

Gruß
Loddar


Bezug
                                
Bezug
minimales Volumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:46 Mi 10.09.2008
Autor: robertl

Aufgabe
OK

OKAY ich habe die PARTIELLE INTEGRATION  FÜR [mm] sin^2(x) [/mm] BENUTZT UND     -cos(x)-sin(x)   raus ist das richtig so??

Bezug
                                        
Bezug
minimales Volumen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:52 Mi 10.09.2008
Autor: Somebody


> OK
>  OKAY ich habe die PARTIELLE INTEGRATION  FÜR [mm]sin^2(x)[/mm]
> BENUTZT UND     -cos(x)-sin(x)   raus ist das richtig so??

Eher nicht. Leite dies doch mal ab und schau, ob wirklich [mm] $\sin^2(x)$ [/mm] rauskommt...

Wie wärs statt dessen mit folgender Überlegung

[mm]\begin{array}{lcll} \displaystyle\int \sin^2(x)\, dx &=& \displaystyle\int\underset{\uparrow}{\sin(x)}\cdot\underset{\downarrow}{\sin(x)}\,dx\\ &=&\displaystyle -\cos(x)\cdot\sin(x)+\int\cos^2(x)\, dx\\ &=&\displaystyle -\cos(x)\cdot \sin(x)+\int(1-\sin^2(x))\, dx\\ &=&\displaystyle -\cos(x)\cdot \sin(x)+x-\int\sin^2(x)\, dx &\displaystyle \Big|+\int\sin^2(x)\, dx\\ \displaystyle 2\int \sin^2(x)\,dx &=& \displaystyle x-\cos(x)\sin(x) &\Big| \div 2\\[.3cm] \displaystyle \int\sin^2(x)\,dx &=& \tfrac{1}{2}(x-\sin(x)\cos(x)) \end{array}[/mm]


P.S: Der LaTeX-Code in meiner ersten Antwort ist inzwischen lesbar geworden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de