www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - mögliche Minimalpolynome
mögliche Minimalpolynome < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

mögliche Minimalpolynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:28 Mo 01.10.2012
Autor: triad

Aufgabe
Sei [mm] F\in End_{\IR}(\IR^4) [/mm] und [mm] \chi_F(X)=(X-2)^4. [/mm] Die Dimension des Eigenraums zum Eigenwert 2 ist 3. Bestimme alle möglichen Minimalpolynome von F. Warum gibt es keine weiteren Möglichkeiten?

Hallo.

Allgemein gilt doch bei einem char. Polynom wie [mm] \chi_F(X)=(X-2)^4, [/mm] dass das Minimalpolynom nur so aussehen kann: [mm] m_F(X)=(X-2)^k [/mm] mit [mm] k\in\{1,2,3,4\}. [/mm] Jetzt kommt noch die Einschränkung [mm] dim_{\IR} [/mm] V(F,2)=3 hinzu, also die Dimension des Eigenraums zum Eigenwert 2 ist 3. Heisst das, dass k genau 3 ist oder [mm] k=\{1,2,3\} [/mm] oder was bedeutet das für das Minimalpolynom?

Vielen Dank

        
Bezug
mögliche Minimalpolynome: Antwort
Status: (Antwort) fertig Status 
Datum: 13:34 Mo 01.10.2012
Autor: felixf

Moin!

> Sei [mm]F\in End_{\IR}(\IR^4)[/mm] und [mm]\chi_F(X)=(X-2)^4.[/mm] Die
> Dimension des Eigenraums zum Eigenwert 2 ist 3. Bestimme
> alle möglichen Minimalpolynome von F. Warum gibt es keine
> weiteren Möglichkeiten?
>  
> Allgemein gilt doch bei einem char. Polynom wie
> [mm]\chi_F(X)=(X-2)^4,[/mm] dass das Minimalpolynom nur so aussehen
> kann: [mm]m_F(X)=(X-2)^k[/mm] mit [mm]k\in\{1,2,3,4\}.[/mm] Jetzt kommt noch
> die Einschränkung [mm]dim_{\IR}[/mm] V(F,2)=3 hinzu, also die
> Dimension des Eigenraums zum Eigenwert 2 ist 3. Heisst das,
> dass k genau 3 ist oder [mm]k=\{1,2,3\}[/mm] oder was bedeutet das
> für das Minimalpolynom?

Kennst du die Jordansche Normalform? Die Aussage ueber die Dimension sagt dir, wie die Jordansche Normalform der Matrix aussehen muss, und daraus kannst du direkt das Minimalpolynom ablesen.

Wenn dir das nichts sagt:

1) Wenn $k = 1$ waere, muesste der Eigenraum vierdimensional sein (warum?). Also geht das nicht.

2) Der Kern von $F - 2 [mm] \cdot [/mm] id$ ist dreidimensional. Wie kann/muss der Kern von $(F - 2 [mm] \cdot id)^2$ [/mm] aussehen?

LG Felix


Bezug
                
Bezug
mögliche Minimalpolynome: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:54 Mo 01.10.2012
Autor: triad

Die Dimension des Eigenraums zum Eigenwert 2 ist 3 bedeutet, dass die Jordan-Form
[mm] \pmat{2&0&0&0\\1&2&0&0\\0&0&2&0\\0&0&0&2} [/mm] ist. Das größte Kästchen ist 2, deswegen ist das Minimalpolynom [mm] m_F(x)=(x-2)^2. [/mm]

Bezug
                        
Bezug
mögliche Minimalpolynome: Antwort
Status: (Antwort) fertig Status 
Datum: 21:59 Mo 01.10.2012
Autor: MathePower

Hallo triad,

> Die Dimension des Eigenraums zum Eigenwert 2 ist 3
> bedeutet, dass die Jordan-Form
>  [mm]\pmat{2&0&0&0\\1&2&0&0\\0&0&2&0\\0&0&0&2}[/mm] ist. Das
> größte Kästchen ist 2, deswegen ist das Minimalpolynom
> [mm]m_F(x)=(x-2)^2.[/mm]  


[ok]


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de