www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - monotonieverhalten von f
monotonieverhalten von f < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

monotonieverhalten von f: Frage
Status: (Frage) beantwortet Status 
Datum: 19:45 Do 01.09.2005
Autor: mona123

Hallo,

ich soll das Monotonieverhalten von f untersuchen.

f(x) = 1/3 x³ - 1/2 x² - 2x

wie stell ich das an?

ableiten??

f'(x) = x² - x - 2

und nu? hab keine ahnung :(

danke im vorraus

mfg

de mona ^-^

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
monotonieverhalten von f: Nullstellen
Status: (Antwort) fertig Status 
Datum: 19:56 Do 01.09.2005
Autor: MathePower

Hallo mona123,

[willkommenmr]

> ich soll das Monotonieverhalten von f untersuchen.
>  
> f(x) = 1/3 x³ - 1/2 x² - 2x
>  
> wie stell ich das an?
>  
> ableiten??
>  
> f'(x) = x² - x - 2
>
> und nu? hab keine ahnung :(

Berechne zunächst mal die Nullstellen der Funktion f'(x). Dann hat f'(x) die Gestalt:

[mm]f'\left( x \right)\; = \;\left( {x\; - \;x_0 } \right)\;\left( {x\; - \;x_1 } \right) \right)[/mm]

Dann musst Du untersuchen in welchen Bereichen die Funktion f'(x) positives bzw. negatives Vorzeichen hat.

Gruß
MathePower
Dasselbe kannst


Bezug
                
Bezug
monotonieverhalten von f: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:43 Do 01.09.2005
Autor: mona123

Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

kay schonmal danke, Nullstellen : x1 = -2 x2 = 1

wie setz ich das nu hier ein?

$ f'\left( x \right)\; = \;\left( {x\; - \;x_0 } \right)\;\left( {x\; - \;x_1 } \right) \right) $

keine ahung ;(


> Dann musst Du untersuchen in welchen Bereichen die Funktion
> f'(x) positives bzw. negatives Vorzeichen hat.


wie das?

sorry :(

Bezug
                        
Bezug
monotonieverhalten von f: Hinweis
Status: (Antwort) fertig Status 
Datum: 21:18 Do 01.09.2005
Autor: MathePower

Hallo mona123,

> kay schonmal danke, Nullstellen : x1 = -2 x2 = 1
>
> wie setz ich das nu hier ein?
>  
> [mm]f'\left( x \right)\; = \;\left( {x\; - \;x_0 } \right)\;\left( {x\; - \;x_1 } \right) \right)[/mm]
>
> keine ahung ;(
>  
>

f'(x) schreibt sich dann so:

[mm]f'\left( x \right)\; = \;\left( {x\; + \;2 } \right)\;\left( {x\; - \;1 } \right) \right)[/mm]

Also für [mm][mm] x_{0}\;=\;-2[/mm] [mm] und für [mm][mm] x_{1}\;=\;1[/mm] [mm] eingesetzt.

> > Dann musst Du untersuchen in welchen Bereichen die Funktion
> > f'(x) positives bzw. negatives Vorzeichen hat.
>  
>
> wie das?

Nun f'(x) ist genau dann positiv, wenn [mm]x\;+\;2[/mm] und [mm]x\;-\;1[/mm] gleiches Vorzeichen haben.

Und f'(x) ist genau dann  negativ, wenn [mm]x\;+\;2[/mm] und [mm]x\;-\;1[/mm] unterschiedliches Vorzeichen haben.

Hier muß dann eine Fallunterscheidung gemacht werden:

Für f'(x) > 0:

i) [mm]\left( {x\; + \;2} \right)\; > \;0\; \wedge \;\left( {x\; - \;1} \right)\; > \;0[/mm]

ii) [mm]\left( {x\; + \;2} \right)\; < \;0\; \wedge \;\left( {x\; - \;1} \right)\; < \;0[/mm]

Ebenso für f'(x) < 0:

i) [mm]\left( {x\; + \;2} \right)\; > \;0\; \wedge \;\left( {x\; - \;1} \right)\; < \;0[/mm]

ii) [mm]\left( {x\; + \;2} \right)\; < \;0\; \wedge \;\left( {x\; - \;1} \right)\; > \;0[/mm]

Zu den verschiedenen Fällen müssen jeweils noch die Lösungsmengen bestimmt werden.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de