multinomialvtlg -> randvtlg. < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | p(x,y,z) = [mm] \binom{n}{y} \binom{n-y}{x} \pi^x_A \pi^y_B \pi^z_C [/mm]
mit [mm] \pi_A [/mm] + [mm] \pi_C [/mm] + [mm] \pi_C [/mm] = 1
Bestimme die Randverteilungen.
|
abend zusammen.
bei dieser aufgabe komme ich auf keinen grünen zweig. klar ist, dass es sich um eine multinomialverteilung handelt und die randverteilungen daher binomialverteilungen mit demselben n und der jeweiligen wahrscheinlichkeit sein müssen.
mein ansatz dazu ist (hier für x):
p(x) = [mm] \summe_{y=0}^{n} \summe_{z=0}^{n} \binom{n}{y} \binom{n-y}{x} \pi^x_A \pi^y_B \pi^z_C [/mm]
alle meine versuche laufen darauf hinaus, dass ich versuche, die variablen in den summen solange durch andere ausdrücke, bis ich die faktoren vor die summe ziehen kann und dann die geom. summenformel anwende.
wäre schön wenn mir jemand sagen könnte ob ich da auf dem richtigen weg bin oder ob das schon falsch ist...zumal die [mm] \pi [/mm] 's und die binomialkoeffizienten zwei unabhängige probleme zu sein scheinen.
gruß,
jack_daniel
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:57 So 26.10.2008 | Autor: | luis52 |
Moin jack_daniel
Du musst dir einmal die gemeinsame Verteilungsfunktion genauer
aufschreiben. Sie lautet:
$f(x,y,z) = [mm] \binom{n}{x,y,z}\pi^x_A \pi^y_B \pi^z_C =\frac{n!}{x!y!(n-x-y)!} \pi^x_A \pi^y_B (1-\pi_A-\pi_B)^{n-x-y}$
[/mm]
mit [mm] $0\le x,y,z\le [/mm] n$, $x+y+z=n$, also $z=n-x-y$. Beachte ferner [mm] $\pi_C=1-\pi_A-\pi_B$.
[/mm]
Es gibt im Prinzip also nur 2 Variablen. Gesucht ist also
[mm] $f_x(x)=\sum_{y=0}^{n-x} \frac{n!}{x!y!(n-x-y)!}\pi^x_A \pi^y_B (1-\pi_A-\pi_B)^{n-x-y}=\frac{n!}{x!(n-x)!}\pi_A^x\sum_{y=0}^{n-x} \frac{(n-x)!}{y!(n-x-y)!} \pi^y_B (1-\pi_A-\pi_B)^{n-x-y}=\frac{n!}{x!(n-x)!}\pi_A^x(1-\pi_A)^{n-x}$
[/mm]
vg Luis
|
|
|
|
|
danke für die schnelle antwort.
wär aber cool wenn mir jemand noch das letzte gleichheitszeichen erklären könnte ? welcher satz/gesetz ist da verwendet worden? oder übersehe ich irgendwas offensichtliches nicht ?
ist mathematisch glaub ich nicht mein tag heute ;)
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 07:49 Mo 27.10.2008 | Autor: | luis52 |
> wär aber cool wenn mir jemand noch das letzte
> gleichheitszeichen erklären könnte ? welcher satz/gesetz
> ist da verwendet worden? oder übersehe ich irgendwas
> offensichtliches nicht ?
Da schau her.
vg Luis
|
|
|
|
|
kopf -> tisch.
wenn mans denn mal gesehen hat mal wieder ganz einfach...^^
danke.
|
|
|
|