n! = n^k < Sonstiges < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 08:55 Fr 04.11.2005 | Autor: | oplok |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
hallo,
ich soll folgende aufgabe lösen:
"Bestimmen Sie alle natürlichen Zahlen n [mm] \ge [/mm] 1, k [mm] \ge [/mm] 1, die die Gleichung n! = [mm] n^k [/mm] erfüllen. Begründen Sie Ihre Antwort."
Ich habe keinen Plan wie ich die lösen soll. Habe mir überlegt, dass n! immer positiv ist, aber [mm] n^k [/mm] ist das nicht... für n=1 und k=1 gilt die Gleichung. Aber sonst???
Gruß
oplok
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:14 Fr 04.11.2005 | Autor: | klausbo |
Die Frage wurde zwar schon gestellt, aber Primzahlen haben wir in der vorlesung noch nicht behandelt. Das soll wohl mit Induktion bewiesen werden. Gruß an alle Essener LeidensgenossenInnen
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 14:55 Fr 04.11.2005 | Autor: | oplok |
klausbo, hast du ne idee wie das gehen soll???
oder sonst jemand???
gruß
oplok
|
|
|
|
|
Hallo oplok!
Auch wenn ihr Primzahlen in der Vorlesung noch nicht hattet, würde ich sagen, dass ihr die Primfaktorisierung benutzen dürft. Immerhin hat man das ja schon in der Schule gemacht, man kann eigentlich ruhig benutzen, was man weiß. Etwas anderes wäre es eigentlich nur dann, wenn ausdrücklich darauf hingewiesen wurde, dass ihr die Aufgabe mit Induktion lösen sollt.
Gruß, banachella
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 13:26 Sa 05.11.2005 | Autor: | oplok |
sorry, aber ich hab leider immernoch keine idee wie ich an die sache herangehen soll.
wie genau muss ich die primfaktorzerlegung machen???
gruß
oplok
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:00 Sa 05.11.2005 | Autor: | Loddar |
Hallo oplok!
Unter dem o.g. Link wurden in den letzten beiden Tagen noch weitere Antworten gepostet.
Sieh Dir diese doch mal an ...
Gruß
Loddar
|
|
|
|