www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - n über k
n über k < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

n über k: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:33 Fr 16.03.2012
Autor: koios

Aufgabe
Bitte um eine Erklärung entlang der Formel

Hallo miteinander,

bei der Formel :  

n!/(n-k)!

verstehe ich das der Zähler alle Möglichkeiten aller Obejekte zählt und der Nenner dann die "ungenutzten Objekte" zählt, somit bleiben nach dem Kürzen im Zähler nur die offenen Objekte übrig, welche dann als Lösung dienen.

Nun im nächsten Schritt versuche ich mir die Formel für [mm] \vektor{n \\ k} [/mm] zu erklären:

n!/(k!(n-k)!)    oder   (n!/(n-k)! * (1/k!)

Ich weiß das durch das teilen mit k! die Beachtung der Reihenfolge aufgehoben wird.
Meine Bitte wäre das mir jemand mit Worten erklärt, warum ich noch einmal durch k! teile. Finde leider keine mir sinngebende Antwort

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
n über k: Antwort
Status: (Antwort) fertig Status 
Datum: 00:15 Sa 17.03.2012
Autor: Gonozal_IX

Hallo koios,

> Ich weiß das durch das teilen mit k! die Beachtung der
> Reihenfolge aufgehoben wird.
>  Meine Bitte wäre das mir jemand mit Worten erklärt,
> warum ich noch einmal durch k! teile. Finde leider keine
> mir sinngebende Antwort

dann gehen wir die Formel doch mal Schritt für Schritt durch:

n! gibt dir die Anzahl an Möglichkeiten n Objekte anzuordnen.

Nun wählen wir aus einer solchen Anordnung mal k Stück aus (oBdA die letzten k Stück), das sähe dann so aus für die triviale Anordnung

[mm] $\underbrace{1, 2, 3, \ldots, n-k}_{(n-k) \text{Objekte}}\quad \underbrace{n-k+1, n-k+2, \ldots, n}_{k \text{ Objekte}}$ [/mm]

Für eine beliebige andere (für n ausreichend groß) bspw so:

[mm] $\underbrace{5, 8, 12, \ldots, 242}_{(n-k) \text{Objekte}}\quad \underbrace{7, 1, \ldots, 23}_{k \text{ Objekte}}$ [/mm]


Betrachten wir nun also alle n! Möglichkeiten, erhalten wir so auf jedenfall auch alle möglichen Auswahlkombinationen für k beliebige Elemente, allerdings mit Berücksichtigung der Reihenfolge der k Elemente!

Wenn du nun k Elemente daraus wählen willst, heißt das also, diese müssen in den letzten k Objekten vorkommen.
Wieviele Möglichkeiten gibt es dafür?

Nun: Für die ersten (n-k) Objekte hast du (n-k)! Möglichkeiten, diese anzuordnen. Für die letzten k Objekte hast du k! Möglichkeiten, diese anzuordnen.

Insgesamt hast du also:

$(n-k)!*k!$ Anordnungen, die deiner "gewünschten" Auswahl entspricht.

Und im Verhältnis zur Gesamtauswahl entspricht dies eben gerade:

[mm] \bruch{n!}{(n-k)!*k!} [/mm] Möglichkeiten

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de