www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - nach x auflösen
nach x auflösen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nach x auflösen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 22:31 Do 16.09.2010
Autor: Polynom

[mm] 0,5x+2=L1x^2-4 [/mm]
Jetzt soll ich nach x auflösen, aber ich komme gerade nicht weiter wie mache ich das? Es soll aber x= [mm] -\bruch{1}{L1} [/mm] raus kommen.
Danke für jede Antwort!

        
Bezug
nach x auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:34 Do 16.09.2010
Autor: Blech

Hi,

> [mm]0,5x+2=L1x^2-4[/mm]
>  Jetzt soll ich nach x auflösen, aber ich komme gerade
> nicht weiter wie mache ich das? Es soll aber x=

es kommt einmal x und einmal [mm] x^2 [/mm] vor. Die Lösungsformel für quadratische Gleichungen bietet sich also an.


EDIT: Btw., setz mal Deine angegebene Lösung ein. Du wirst sehen, daß sie für ein allgemeines [mm] $L_1$ [/mm] nicht stimmen kann. Nur wenn [mm] $L_1$ [/mm] einen bestimmten Wert hat, und Du den auch kennst, kommt das raus.

ciao
Stefan

Bezug
                
Bezug
nach x auflösen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 22:38 Do 16.09.2010
Autor: Polynom

hallo,
wenn ich aber die p/q Formel anwende dann bekomme ich was ganz anderes heraus, dann fällt L1 weg oder?
Vielen Dank für eure Antworten!

Bezug
                        
Bezug
nach x auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:41 Do 16.09.2010
Autor: Blech

Hi,

da war meine Ergänzung zu langsam. =)

[mm] $\frac{-1}{L_1}$ [/mm] ist definitiv nicht das, was bei der Lösungsformel rauskommt. Es gilt nur [mm] $x=\frac{-1}{L_1}$ [/mm] für ein spezielles [mm] $L_1$. [/mm]

ciao
Stefan

Bezug
                                
Bezug
nach x auflösen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 22:46 Do 16.09.2010
Autor: Polynom

Hallo,
wenn ich x= [mm] -\bruch{1}{L1} [/mm] in die gleichgesetzte gleichung für x einsetzte dann bekomme ich für L1= [mm] \bruch{1}{4} [/mm] raus. Aber wie komme ich von der gleichgesetzten Gleichung auf x= [mm] -\bruch{1}{L1}? [/mm]
Vielen Dank für eure Antworten!

Bezug
                                        
Bezug
nach x auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:54 Do 16.09.2010
Autor: Blech

Hi,

>  wenn ich x= [mm]-\bruch{1}{L1}[/mm] in die gleichgesetzte gleichung
> für x einsetzte dann bekomme ich für L1= [mm]\bruch{1}{4}[/mm]
> raus. Aber wie komme ich von der gleichgesetzten Gleichung
> auf x= [mm]-\bruch{1}{L1}?[/mm]

überhaupt nicht.

Nur wenn Du vorher weißt, daß [mm] $L_1=\frac14$ [/mm] kannst Du dann ausrechnen, daß [mm] $x=-\frac1{L_1}$ [/mm] (d.h. x=-4 -- übrigens ist x=6 dann auch eine Lösung).

Entweder hat die Aufgabe einen Teil, den Du nicht erwähnt hast (d.h. z.B. andere Formulierung: "wenn [mm] $\frac{-1}{L_1}$ [/mm] die Gleichung löst, was ist dann [mm] $L_1$?"), [/mm] oder Du hast Dich vorher schon verrechnet, oder die angegebene Lösung ist einfach falsch.

ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de