www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Numerik linearer Gleichungssysteme" - natürliche kubische Splines,
natürliche kubische Splines, < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

natürliche kubische Splines,: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:11 Sa 06.02.2016
Autor: sissile

Aufgabe
Ich möchte einen kubischen natürlichen Spline finden [mm] S:[0,2]\rightarrow \mathbb{R} [/mm] so dass er den Datensatz [mm] \{(0,1),(1,2),(2,0)\} [/mm] interproliert.

Hallo,
Ich habe das Beispiel schon gelöst mittels der Grammschen Matrix(hier nur 1x1 Matrix) der nodalen Basis(Hüttchenfunktion).

Ich wollte es aber nochmals direkt lösen:
[mm] s_1(x)=ax^3+bx^2+cx+d, s_1'(x)=3ax^2+2bx+c, s_1''(x)=6ax+2b [/mm]
[mm] s_2(x)=ex^3+fx^2+gx+h, s_2'(x)=3ex^2+2fx+g, s_2''(x)=6ex+2f [/mm]

Die Bedingungen an [mm] s_1 [/mm] und [mm] s_2 [/mm] sind doch folgende:
[mm] s_1(0)=1 [/mm] d.h. d=1
[mm] s_1(1)=2=s_2(1) [/mm] d.h. a+c=2=e+f+g+h
[mm] s_2(2)=0 [/mm] d.h. 8e +4f +2g+h=0

Da es ein natürlicher Spline sein soll:
[mm] s_1''(0)=0 [/mm] d.h. b=0
[mm] s_2''(2)=0 [/mm] d.h. 12e+2f=0 [mm] \rightarrow [/mm] e= -f/6

Da [mm] s\in C^2[0,2] [/mm] ist muss
[mm] s_1'(1)=s_2'(1) [/mm] d.h. 3a+c=3e+2f+g
[mm] s_1''(1)=s_2''(1) [/mm] d.h. 6a=6e+2f [mm] \rightarrow [/mm] a=e+f/3

Mich würde interessieren ob schon der Ansatz falsch ist!

Ich hätte nämlich nun:
a=e+f/3 in I: a+c=2=e+f+g+h und II:  3a+c=3e+2f+g eingesetzt
dadurch folgt c=2/3 f +g+h und c=f+g
Woraus folgt 2/3 f + g+h=c=f+g und daraus folgt 1/3 f =h

Aus a+c=2 folgt c=2-a=2-e-f/3 = 2+ f/6 - f/3 = 2 -f/6
Aus e+f+g+h=2 folgt g=2-e-f-h=2+ [mm] \frac{f-6f-2f}{6}= [/mm] 2 - 7/6 f

Aus 8e+4f+2g+h=0 folgt durch einsetzten des Bekannten: [mm] \frac{-8}{6} [/mm] f + 4f + 4 - [mm] \frac{2*7}{6} [/mm] f + [mm] \frac{1}{3} [/mm] f=0 [mm] \iff \frac{-4f+12f-7f+f +12}{3}=0 \iff [/mm] 2f+12=0 [mm] \iff [/mm] f=-6

Daraus folgt e=1, c=3, g=-5, h=-2, a=-1 was falsche Ergebnisse bringt.

        
Bezug
natürliche kubische Splines,: Antwort
Status: (Antwort) fertig Status 
Datum: 07:32 So 07.02.2016
Autor: angela.h.b.


> Ich möchte einen kubischen natürlichen Spline finden
> [mm]S:[0,2]\rightarrow \mathbb{R}[/mm] so dass er den Datensatz
> [mm]\{(0,1),(1,2),(2,0)\}[/mm] interproliert.
>  Hallo,
>  Ich habe das Beispiel schon gelöst mittels der Grammschen
> Matrix(hier nur 1x1 Matrix) der nodalen
> Basis(Hüttchenfunktion).
>  
> Ich wollte es aber nochmals direkt lösen:
>  [mm]s_1(x)=ax^3+bx^2+cx+d, s_1'(x)=3ax^2+2bx+c, s_1''(x)=6ax+2b[/mm]
>  
> [mm]s_2(x)=ex^3+fx^2+gx+h, s_2'(x)=3ex^2+2fx+g, s_2''(x)=6ex+2f[/mm]
>  
> Die Bedingungen an [mm]s_1[/mm] und [mm]s_2[/mm] sind doch folgende:
>  [mm]s_1(0)=1[/mm] d.h. d=1
>  [mm]s_1(1)=2=s_2(1)[/mm] d.h. a+c=2=e+f+g+h

Hallo,

es ist doch s(1)=a+b+c und nicht a+c.

LG Angela



>  [mm]s_2(2)=0[/mm] d.h. 8e +4f +2g+h=0
>  
> Da es ein natürlicher Spline sein soll:
>  [mm]s_1''(0)=0[/mm] d.h. b=0
>  [mm]s_2''(2)=0[/mm] d.h. 12e+2f=0 [mm]\rightarrow[/mm] e= -f/6
>  
> Da [mm]s\in C^2[0,2][/mm] ist muss
>  [mm]s_1'(1)=s_2'(1)[/mm] d.h. 3a+c=3e+2f+g
>  [mm]s_1''(1)=s_2''(1)[/mm] d.h. 6a=6e+2f [mm]\rightarrow[/mm] a=e+f/3
>  
> Mich würde interessieren ob schon der Ansatz falsch ist!
>  
> Ich hätte nämlich nun:
>  a=e+f/3 in I: a+c=2=e+f+g+h und II:  3a+c=3e+2f+g
> eingesetzt
>  dadurch folgt c=2/3 f +g+h und c=f+g
>  Woraus folgt 2/3 f + g+h=c=f+g und daraus folgt 1/3 f =h
>  
> Aus a+c=2 folgt c=2-a=2-e-f/3 = 2+ f/6 - f/3 = 2 -f/6
>  Aus e+f+g+h=2 folgt g=2-e-f-h=2+ [mm]\frac{f-6f-2f}{6}=[/mm] 2 -
> 7/6 f
>  
> Aus 8e+4f+2g+h=0 folgt durch einsetzten des Bekannten:
> [mm]\frac{-8}{6}[/mm] f + 4f + 4 - [mm]\frac{2*7}{6}[/mm] f + [mm]\frac{1}{3}[/mm] f=0
> [mm]\iff \frac{-4f+12f-7f+f +12}{3}=0 \iff[/mm] 2f+12=0 [mm]\iff[/mm] f=-6
>  
> Daraus folgt e=1, c=3, g=-5, h=-2, a=-1 was falsche
> Ergebnisse bringt.


Bezug
                
Bezug
natürliche kubische Splines,: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:22 So 07.02.2016
Autor: sissile


> > Ich möchte einen kubischen natürlichen Spline finden
> > [mm]S:[0,2]\rightarrow \mathbb{R}[/mm] so dass er den Datensatz
> > [mm]\{(0,1),(1,2),(2,0)\}[/mm] interproliert.
>  >  Hallo,
>  >  Ich habe das Beispiel schon gelöst mittels der
> Grammschen
> > Matrix(hier nur 1x1 Matrix) der nodalen
> > Basis(Hüttchenfunktion).
>  >  
> > Ich wollte es aber nochmals direkt lösen:
>  >  [mm]s_1(x)=ax^3+bx^2+cx+d, s_1'(x)=3ax^2+2bx+c, s_1''(x)=6ax+2b[/mm]
>  
> >  

> > [mm]s_2(x)=ex^3+fx^2+gx+h, s_2'(x)=3ex^2+2fx+g, s_2''(x)=6ex+2f[/mm]
>  
> >  

> > Die Bedingungen an [mm]s_1[/mm] und [mm]s_2[/mm] sind doch folgende:
>  >  [mm]s_1(0)=1[/mm] d.h. d=1
>  >  [mm]s_1(1)=2=s_2(1)[/mm] d.h. a+c=2=e+f+g+h
>  
> Hallo,
>  
> es ist doch s(1)=a+b+c und nicht a+c.
>  
> LG Angela

Danke für deinen Post!
Aber hier geht schon ein, dass $ [mm] s_1''(0)=0 [/mm] $ d.h. b=0 ist. Unglücklicherweise steht das erst zwei Zeilen drunter als Eigenschaft eines natürlichen Splines.
Würde mich über weitere Korrektur freuen, da das Ergebnis am Schluss nicht passt.

Bezug
                        
Bezug
natürliche kubische Splines,: Antwort
Status: (Antwort) fertig Status 
Datum: 22:21 So 07.02.2016
Autor: Jule2

Wo ist denn bei [mm] s_{1}(1)=2=s_{2}(1) [/mm] dein d=1 geblieben??
Also gilt dann  [mm] s_{1}(1)=a+c+1=2 \Rightarrow [/mm] a+c=1!!
Damit komme ich auf:

[mm] a=-\bruch{3}{4} [/mm] , b=0 , [mm] c=\bruch{1}{4} [/mm] , d=1

[mm] e=\bruch{3}{4} [/mm] , [mm] f=-\bruch{9}{2} [/mm] , [mm] g=\bruch{25}{4} [/mm] , [mm] h=-\bruch{1}{2} [/mm]

Lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de