www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Statistik/Hypothesentests" - neyman-pearson-tests
neyman-pearson-tests < Statistik/Hypothesen < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik/Hypothesentests"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

neyman-pearson-tests: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:56 Mo 07.06.2010
Autor: simplify

Aufgabe
Hier ist die geometrische Version des Neyman-Pearson-Ergebnisses.
Zu [mm] \lambda_{1}, [/mm] ..., [mm] \lambda_{n} \in [/mm] [0,1] ; [mm] \mu_{1},...,\mu_{n} \in [/mm] [0,1] und [mm] \alpha \in [/mm] [0,1] mit [mm] \summe_{i=1}^{n}\lambda_{i} [/mm] = [mm] \summe_{i=1}^{n}\mu_{i} [/mm] = 1 sei das folgende Maximierungsproblem gegeben.
Maximiere [mm] \summe_{i=1}^{n}\mu_{i}*x_{i} [/mm] , sodass 0 [mm] \le x_{i} \le [/mm] 1 fuer alle [mm] 1\le [/mm] i [mm] \le [/mm] n , [mm] \summe_{i=1}^{n}\lambda_{i}*x_{i} [/mm] = [mm] \alpha. [/mm]
1) Zeigen Sie die Existenz einer Loesung dieses Problems.
2)Zeigen Sie, dass eine Loesung [mm] x_{1},...,x_{n} [/mm] existiert, bei der es hoechstens ein i mit [mm] x_{i} \not\in [/mm] {0,1} gibt.

hallo,
ich habe leider keine ahnung wie ich an diese aufgabe rangehen muss/kann!
eigentlich muss doch das Maximum( [mm] \summe_{i=1}^{n}\mu_{i}*x_{i} [/mm] )= 1 sein denn beim ableiten und auch durch hinschauen ist das doch klar oder nicht?
aber selbst wenn hilft das uns bei der aufgabe auch nicht wirklich weiter, oder?
es waere super wenn mir jemand weiterhelfen koennte...
Liebe Gruesse
simplify

        
Bezug
neyman-pearson-tests: Antwort
Status: (Antwort) fertig Status 
Datum: 22:02 Mo 07.06.2010
Autor: Supersaff

hört sich nach einer behrends aufgabe an...

versuchs doch mal mit lagrange methode


das maximum ist natürlich 1, aber wir haben eine nebenbedingung... die muss auch erfüllt sein

Bezug
        
Bezug
neyman-pearson-tests: Antwort
Status: (Antwort) fertig Status 
Datum: 22:06 Mo 07.06.2010
Autor: Supersaff

hört sich nach einer behrends aufgabe an...

versuchs doch mal mit lagrange methode

Bezug
                
Bezug
neyman-pearson-tests: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:37 Di 08.06.2010
Autor: simplify

danke erstmal und ja,behrends war da mal wieder etwas kreativ.
ich hab mal versucht nachdem kochrezept vorzugehen,aber bin mir da ziemlich unsicher...
[mm] f(\mu, [/mm] x) [mm] =\summe_{i=1}^{n}\mu_{i}*x_{i} [/mm]
[mm] h(\lambda, [/mm] x) = [mm] \summe_{i=1}^{n}\lambda_{i}*x_{i} =\alpha [/mm]
[mm] \summe_{i=1}^{n}\lambda_{i}*x_{i} -\alpha [/mm] = 0
[mm] L(\lambda,\mu,x,\nu) [/mm] = [mm] \summe_{i=1}^{n}\mu_{i}*x_{i} [/mm] - [mm] \nu [/mm] ( [mm] \summe_{i=1}^{n}\lambda_{i}*x_{i} -\alpha [/mm] )
wenn ich nun die bedingungen nachpruefe und die beiden funktionen jeweils nach ihren komponenten ableite erhalte ich,dass [mm] \nu [/mm] =1.
aber bei der dritten bedingung ist mir das nicht ganz klar :
[mm] \bruch{d L(\lambda,\mu,x,\nu)}{d \nu} [/mm] = - [mm] \summe_{i=1}^{n}\lambda_{i}*x_{i} [/mm] + [mm] \alpha [/mm] = 0
was soll ich denn mit dem ausdruck anfangen? denn habe ich doch quasi schon von anfang an gegeben.



Bezug
                        
Bezug
neyman-pearson-tests: Antwort
Status: (Antwort) fertig Status 
Datum: 16:49 Di 08.06.2010
Autor: Supersaff

na, eigentlich leitet man bei lagrage partiell nach der einzelnen komponenten ab...  

aber wenn ich so darüber nachdenke, kann man die aufgabe auch argumentativ lösen... dann ist sie ziemlich trivial... xD

warst du am montag bei der extra-vorlesung??? falls ja was hat er gemacht?

lg



Bezug
                                
Bezug
neyman-pearson-tests: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:55 Di 08.06.2010
Autor: simplify

ja gut dann schau ich mal,was sich da so argumentieren lässt.
am montag war mal wieder keine sonderveranstaltung.er war irgendwie mit anderen dingen beschäftigt.
lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik/Hypothesentests"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de