www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - nichtisomorphe fundamentalgrp.
nichtisomorphe fundamentalgrp. < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nichtisomorphe fundamentalgrp.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 08:26 So 30.06.2013
Autor: Schachtel5

Hallo, ich bin etwas verwirrt und hoffe, ihr könnt mich dabei aufklären.
Haben definiert die n-Sphäre [mm] S^n:=\{x\in \mathbb{R}^{n+1}:\|x\|=r\}, r\in \mathbb{R}_{>0}. [/mm] Ich dachte bisher, man könnte einfach so schreiben
[mm] S^n=S^1\times...\times S^1 [/mm] (n-mal) bzw dass diese Räume wenigstens homöomorph sind.
Bezeichne als [mm] \pi_1(S^1,x_0) [/mm] mit beliebigem [mm] x_0\in S^1 [/mm] als Fundamentalgruppe von [mm] S^1 [/mm] zum Basispunkt [mm] x_0. [/mm] Jetzt weiss ich, dass diese isomorph zu [mm] \mathbb{Z} [/mm] ist, dementsprechend sind [mm] \pi_1(S^1,x_0)\times ...\times \pi_1(S^1,z_0) [/mm] (n-mal) [mm] \cong \pi_1(S^1\times...\times S^1 ,(x_0,...,z_0))\cong \mathbb{Z}\times...\times \mathbb{Z} [/mm] (n-mal).
Aber ich weiss auch, dass [mm] \pi_1(S^n,y_0)=\{e\} [/mm] für n>1, also
[mm] \pi_1(S^1\times...\times S^1 ,(x_0,...,z_0))\not= \pi_1(S^n,y_0), [/mm] was mich etwas verwirrt.
Jetzt kenne ich ja die Fundamentalgruppen, aber ich dachte erst, dass die gleich sein müssen, habe ja auch immer gedacht, dass [mm] S^n=S^1\times ...\times S^1 [/mm] (n-mal), aber letzte Gleihheit (oder Homöomorphie) scheint ja falsch zu sein oder?also wenn man [mm] S^n, S^1 [/mm] mit der von [mm] \mathbb{R}^{n+1} [/mm] induzierten Topologie versieht und auf [mm] S^1\times...\times S^1 [/mm] die Produkttopologie ...
Oder wie kann man sich das erklären?
Lg



Edit: ok, das stimmt so anscheinend wirklich nicht, anschaulich ist mir das jetzt klar, zb für n=2 hat man [mm] S^2 [/mm] die Kugel und [mm] S^1\times S^1 [/mm] den Torus, der 1 Loch hat und die Sphäre hat kein Loch. Aber wie sieht man dies ohne Anschauung?
Wie könnte man formal begründen, dass es kein Homöomorphismus geben kann ohne dass man Fundamentalgruppen kennt?
Lg

        
Bezug
nichtisomorphe fundamentalgrp.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:36 Mo 01.07.2013
Autor: hippias

Ob man die Nichtisomorphie auch anders nachweisen kann, weiss ich nicht, aber Du schilderst hier jedenfalls eine ganz und gar uebliche Vorgehensweise fuer das fehlen einer Isomorphie: Definiere eine Invariante - hier die Fundamentalgruppe - und zeige, dass diese fuer zwei Strukturen unterschiedlich ist: dann kann Isomorphie nicht vorliegen.
Ein bisschen Anschauung ist fuer einen guten Beweisansatz sicher nicht verkehrt.

Bezug
        
Bezug
nichtisomorphe fundamentalgrp.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:20 Do 04.07.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de