www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - nichtleere Teilmenge von IN
nichtleere Teilmenge von IN < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nichtleere Teilmenge von IN: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:50 Di 13.12.2011
Autor: elmanuel

Aufgabe
Beweisen Sie mittels vollstandiger Induktion, dass jede nichtleere 
Teilmenge von IN ein Minimum besitzt

Hallo liebe Gemeinde!

den Satz in ne Formel umzuformen macht mir schwierigkeiten....

sei A Menge und A Teilmenge von IN..
existiert ein x für das gilt x [mm] \in [/mm] IN und  [mm] \forall [/mm] y [mm] \in [/mm] A : x<=y und gleichzeitig ist x element von A dann nennen wir x das minimum von A

hm.... wie komm ich jetzt zu einer aussage die ich mit V.I. behandeln kann??



        
Bezug
nichtleere Teilmenge von IN: Antwort
Status: (Antwort) fertig Status 
Datum: 23:56 Di 13.12.2011
Autor: Jule2

Hi Elmanuel!
Ich würde einfach mal annehmen (bin mir aber nicht zu 100% sicher) du nimmst dir die kleinstmögliche Teilmenge aus [mm] \IN [/mm] und zeigst dann mittels V. I. das dass dann auch für alle anderen gilt!

Bezug
                
Bezug
nichtleere Teilmenge von IN: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:37 Mi 14.12.2011
Autor: elmanuel

ok versuch...

Für dein Anfang nehme ich [mm] N_1 [/mm] als einelementige Teilmenge von N mit [mm] N_1=\{n_1\} [/mm]

[mm] N_1 [/mm] hat offenbar ein Minimum und zwar [mm] n_1 [/mm]

das gilt für alle einelementigen Teilmengen

Jetzt nehme ich die 2 Elementigen [mm] N_2 [/mm]
[mm] N_2=\{n_1,n_2\} [/mm]
da N geordnete Menge ist enthält auch diese Menge ein Minimum: entweder [mm] n_1 [/mm] oder [mm] n_2 [/mm]

das gilt auch für alle 2elementigen Teilmengen

Schritt:

sei [mm] N_n+1 [/mm] eine beliebige Teilmenge mit [mm] N_{n+1}=\{n_1,n_2,...,n_n,n_{n+1}\} [/mm]

dann gilt [mm] N_{n+1}=\{n_1,n_2,...,n_n\} [/mm] U [mm] \{n_{n+1}\} [/mm]
beide Mengen müssen ein kleinstes Element haben und dieses Minimum ist auch Minimum von [mm] N_{n+1}. [/mm]

ok?

Bezug
                        
Bezug
nichtleere Teilmenge von IN: Antwort
Status: (Antwort) fertig Status 
Datum: 08:43 Mi 14.12.2011
Autor: hippias

Schoen und gut, aber damit weist Du die Existenz nur fuer endliche Teilmengen nach. Wie waere es damit: Sei $A$ nichtleere Teilmenge. Fuer alle $n$ gilt: Wenn [mm] $n\in [/mm] A$, dann besitzt $A$ ein kleinstes Element.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de