nichtlineare Randbedingung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 03:23 Di 01.04.2008 | Autor: | Lufti |
Aufgabe | A(x)y''+B(x)y'+C(x)y=D(x)
y(x1)=G
y'(x2)=f(y) |
Hallo,
ich muss ein numerisches Verfahren schreiben, dass mir die DGL loest. Das habe ich gemacht und jetzt will ich mit verschiedenen Funktionen A,B,C,D und f mein Programm testen und deshalb habe ich mir Gedanken zu einer exakten Loesung gemacht.
Kann es denn sein, dass es fuer eine nichtlineare Funktion f keine eindeutige Loesung gibt, oder liege ich da falsch?
Koennte ich fuer ein nichtlineares f eine Test-DGL mit exakter Loesung finden, um meinen Code zu validieren?
Danke,
Johannes
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Ein Testproblem lässt sich leicht finden:[mm] A=1\;\;B=0\; \;C=1\;\;D=0 [/mm] hat das Lösungsfundamentalsystem:[mm] a\cos(x)+b\sin(x) [/mm] mit den Randbedingugnen:[mm] y(0)=1\;\;y'(2\pi)=y(2\pi)^2-1 [/mm]. Die exakte Lösung wäre dann [mm] \cos(x)[/mm].
Die Nichteindeutigkeit liegt aber nicht nur an [mm]f[/mm] sondern auch daran, das du ein Randwertproblem hast. Für [mm]y(0)=1\;\;y'(2\pi)=y(2\pi)^2[/mm] hat die Aufgabe zwei Lösungen und für [mm]y(0)=1\;\;y'(2\pi)=y(2\pi)^2+1[/mm] keine. Das ist die Abhängigkeit von f. Wenn man jetzt aber eine andere Randbedingung einsetzt, zB.[mm]y(0)=1\;\;y(2\pi)=0[/mm] dann hat das Problem keine Lösung. Das ist die Abhängigkeit von den Randbedingungen.
viele Grüße, Straussy
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:42 Sa 05.04.2008 | Autor: | Lufti |
Danke fuer die Antwort.
|
|
|
|