www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Numerik linearer Gleichungssysteme" - nichttriviale Lösungen
nichttriviale Lösungen < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nichttriviale Lösungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:09 So 11.11.2007
Autor: basti1986

Aufgabe
Für beliebige Werte von [mm] \lambda [/mm] besitzt das lineare Gleichungssystem A [mm] \* [/mm] X = [mm] \lambda \* [/mm] X mit der Matrix A := [mm] \pmat{ 1 & 2 & 3 \\ 2 & -4 & -2 \\ 3 & -2 & 1 } [/mm] die triviale Lösung X = 0 .
Für Welche Werte von [mm] \lambda [/mm] besitzt das Gleichungssystem nichttriviale Lösungen?
Man gebe die allgemeine Lösung des Gleichungssystems für den größten Wert von [mm] \lambda [/mm] an.

Hallo!

Mein Problem bei dieser Aufgabe ist, dass ich keinen Ansatz habe. Ich denke die Aufgabe ist nicht schwer, wenn ich ersteinmal weiß was ich überhaupt machen muss.

Mein erster Ansatz war:

A [mm] \* [/mm] X = [mm] \lambda \* [/mm] X

A [mm] \* [/mm] X [mm] \* X^{T} [/mm] = [mm] \lambda \* [/mm] X [mm] \* X^{T} [/mm]

A [mm] \* [/mm] ( X [mm] \* X^{T} )^{-1} [/mm] = [mm] \lambda \* [/mm] ( X [mm] \* X^{T} )^{-1} [/mm]

A [mm] \* [/mm] E = [mm] \lambda \* [/mm] E

allerdings hab ich das ohne weiter nachzudenken gemacht und ich weiß auch nicht, welche Schlussfolgerung ich daraus ziehen kann.
Kann mir jemand nen Tipp geben, damit es bei mir "Klick" macht? ;)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Gruß
Basti

        
Bezug
nichttriviale Lösungen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:55 Mo 12.11.2007
Autor: MatthiasKr

Hallo basti,
> Für beliebige Werte von [mm]\lambda[/mm] besitzt das lineare
> Gleichungssystem A [mm]\*[/mm] X = [mm]\lambda \*[/mm] X mit der Matrix A :=
> [mm]\pmat{ 1 & 2 & 3 \\ 2 & -4 & -2 \\ 3 & -2 & 1 }[/mm] die
> triviale Lösung X = 0 .
>  Für Welche Werte von [mm]\lambda[/mm] besitzt das Gleichungssystem
> nichttriviale Lösungen?
>  Man gebe die allgemeine Lösung des Gleichungssystems für
> den größten Wert von [mm]\lambda[/mm] an.
>  Hallo!
>  
> Mein Problem bei dieser Aufgabe ist, dass ich keinen Ansatz
> habe. Ich denke die Aufgabe ist nicht schwer, wenn ich
> ersteinmal weiß was ich überhaupt machen muss.
>  
> Mein erster Ansatz war:
>  
> A [mm]\*[/mm] X = [mm]\lambda \*[/mm] X
>  
> A [mm]\*[/mm] X [mm]\* X^{T}[/mm] = [mm]\lambda \*[/mm] X [mm]\* X^{T}[/mm]
>  
> A [mm]\*[/mm] ( X [mm]\* X^{T} )^{-1}[/mm] = [mm]\lambda \*[/mm] ( X [mm]\* X^{T} )^{-1}[/mm]
>  
> A [mm]\*[/mm] E = [mm]\lambda \*[/mm] E
>  
> allerdings hab ich das ohne weiter nachzudenken gemacht und
> ich weiß auch nicht, welche Schlussfolgerung ich daraus
> ziehen kann.
>  Kann mir jemand nen Tipp geben, damit es bei mir "Klick"
> macht? ;)
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

ist dir bewusst, dass du hier die eigenwerte der matrix A bestimmen sollst? hattet ihr das noch nicht in der VL? das laeuft darauf hinaus, die matrix [mm] $A-\lambda [/mm] E$ zu betrachten und zu pruefen, fuer welche [mm] \lambda [/mm] der kern dieser matrix nichttrivial ist. die eigenwerte bestimmt man, indem man die nullstellen des charakteristischen polynomns [mm] $\det(A-\lambda [/mm] E)$ berechnet.

gruss
matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de