www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - noch 'ne Differentialgleichung
noch 'ne Differentialgleichung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

noch 'ne Differentialgleichung: Lösung?
Status: (Frage) beantwortet Status 
Datum: 21:02 Mo 18.04.2005
Autor: mat84

Hi!

Hab noch ein Problem mit ner DGL, diesmal gehts allerdings um die Lösung ;-)

[mm] \bruch{dP}{dt} = \bruch{1}{5}*P - \bruch{1}{5175}*P^2 [/mm]

Trennung der Variablen ergibt
[mm] \bruch{dP}{\bruch{1}{5}*P - \bruch{1}{5175}*P^2} = 1 dt [/mm]

Da mir die linke Seite etwas schwierig zu integrieren scheint, hab ichs mal versucht mit Partialbruchzerlegung zu vereinfachen (Rechenfehler nicht ausgeschlossen) und kriege:
[mm] \bruch{dP}{\bruch{1}{5}*P - \bruch{1}{5175}*P^2} = \bruch{1}{\bruch{1}{5}*P} + \bruch{\bruch{1}{207}}{1-\bruch{1}{1035}*P} = \bruch{5}{P} + \bruch{1}{207-\bruch{1}{5}*P} [/mm]

Wenn ich nun beide Seiten integriere, kriege ich
[mm] 5*ln(P) -5*ln\left(207-\bruch{1}{5}*P\right) + k_1 = t + k_2 [/mm]
[mm] 5*ln\left(\bruch{P}{207-\bruch{1}{5}*P}\right) = t + k_2 - k_1 [/mm]
[mm] ln\left(\bruch{P}{207-\bruch{1}{5}*P}\right)^5 = t + k_2 - k_1 [/mm]

Wenn ich hier weiterrechne, wird das Ergebnis für P ziemlich unschön... Frage, ist das denn trotzdem richtig, oder stecken (ein oder mehrere) Rechenfehler drin oder ist irgendwo schon ein ganz falscher Ansatz??

Würd mich freuen, wenn mir jemand helfen könnte :-)

Danke schonmal
mat84

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
noch 'ne Differentialgleichung: richtig
Status: (Antwort) fertig Status 
Datum: 21:43 Mo 18.04.2005
Autor: leduart

Hallo
> Wenn ich nun beide Seiten integriere, kriege ich
>  [mm]5*ln(P) -5*ln\left(207-\bruch{1}{5}*P\right) + k_1 = t + k_2[/mm]
>  
> [mm]5*ln\left(\bruch{P}{207-\bruch{1}{5}*P}\right) = t + k_2 - k_1[/mm]

nächster Schritt  schlecht! durch 5 dividieren, dann ehoch etc ist nicht so schlimm für P. k1 undk2 zusammenfassen:k, [mm] e^{k}= [/mm] A und es wird ziemlich einfach.  
Ne!> [mm]ln\left(\bruch{P}{207-\bruch{1}{5}*P}\right)^5 = t + k_2 - k_1[/mm]

Die einzelnen Zahlen in der partialbruchzerlegung hab ich nicht nachgerechnet!
Gruss leduart

Bezug
                
Bezug
noch 'ne Differentialgleichung: danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:12 Di 19.04.2005
Autor: mat84

Danke für die Hilfe...

Hast recht, mit dem :5 wirds nicht so schlimm... aber ne einfachere Aufgabe hätte man uns auch stellen können (zumal das eine Wiederholungsaufgabe sein soll ;-) )

Gruß
mat84

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de