www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - nochma einfaches dgl
nochma einfaches dgl < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nochma einfaches dgl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:21 Mi 04.04.2007
Autor: deex

Aufgabe
finden sie die allgemeine lösung

folgendes war gegeben:
[mm] y' = xe^{x + y} , y(1) = 0 [/mm]
dies hab ich dann mal probiert zu lösen - nur irgendwie vergebens
[mm] y' = xe^{x + y} = xe^x*e^y [/mm]
[mm] \integral_{0}^{y}{\bruch{1}{e^y} dy} = \integral_{0}^{x}{xe^x dx} [/mm]
[mm] \bruch {-ln(10)}{e^y} = e^x(x-1) [/mm]
[mm] y(x) = ln \bruch {-ln10 } { e^x ( x - 1) } + C [/mm]
[mm] C = -ln(\bruch{-ln(10)}{e ( 1 - 1 )}) [/mm]
hier komm ich einfach nicht weiter...würde gerne wissen wo ich vorher schon den fehler gemacht hab

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
nochma einfaches dgl: Integrationsschritt unklar
Status: (Antwort) fertig Status 
Datum: 22:00 Mi 04.04.2007
Autor: Loddar

Hallo deex!


Mir ist Dein eigentlicher Integrationsschritt unklar. Hier erhalte ich:


> [mm] \integral_{0}^{y}{\bruch{1}{e^y} dy} = \integral_{0}^{x}{xe^x dx} [/mm]

[mm] $-e^{-y} [/mm] \ = \ [mm] -\bruch{1}{e^y} [/mm] \ = \ [mm] e^x*(x-1)+C$ [/mm]


Gruß
Loddar


Bezug
                
Bezug
nochma einfaches dgl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:34 Mi 04.04.2007
Autor: deex

danke erstmal - war ziemlich dummer fehler von mir - *warscheinlich in gedanken*

wenn ich jetzt aber weiterrechne dann erhalte ich folgendes
[mm] \bruch{-1}{e^y} = e^x ( x - 1) + C [/mm]
[mm] e^y = \bruch {-1} { e^x ( x- 1) + C } [/mm]
[mm] y= ln \bruch {-1}{ e^x ( x - 1) + C } [/mm]
und jetzt folgende vorraussetzung:
[mm] y(1) = 0 [/mm]
[mm] 0 = ln \bruch {-1} {C} [/mm]
[mm] 1 = \bruch {-1} {C} -> C = -1 [/mm]
wenn ich das jetzt aber überprüfe bekommen ich
[mm] y(0) = 0 [/mm]
herraus - was ja der vorraussetzung wiederspricht

hofft ihr könnt nochmal helfen

thx

Bezug
                        
Bezug
nochma einfaches dgl: Antwort
Status: (Antwort) fertig Status 
Datum: 23:41 Mi 04.04.2007
Autor: HJKweseleit

C = -1
ist vollkommen richtig.
Du erhältst auch
y(1)=$ ln [mm] \bruch [/mm] {-1}{ [mm] e^1 [/mm] ( 1 - 1) -1 } $
=$ ln [mm] \bruch [/mm] {-1}{ [mm] e^1 [/mm] ( 0) -1 } $
=$ ln (1) =0 $ wie gewünscht.

Für y(0) ergibt sich
y(0)=$ ln [mm] \bruch [/mm] {-1}{ [mm] e^0 [/mm] ( 0 - 1) -1 } $
=$ ln [mm] \bruch [/mm] {-1}{ 1*(-1) -1 } $
=$ ln [mm] \bruch [/mm] {1}{2} $ .

Aber du hattest ja eine Anfangsbedingung für y(1), nicht für y(0).

Bezug
                                
Bezug
nochma einfaches dgl: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:57 Mi 04.04.2007
Autor: deex

ich dank nochmal - nur dumme fehlter gehabt.... :D

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de