www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - nochmal Binominalkoeffizient
nochmal Binominalkoeffizient < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nochmal Binominalkoeffizient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:11 So 22.02.2004
Autor: curie

Hallo Stefan!

Vielen Dank für deine Erklärung, ich habe sie verstanden. Solche mathematischen Sachen kann ich mir am besten merken, wenn ich das Zustandekommen von Formeln verstehe, und nicht wenn ich sie auswendiglerne. Also: großes Dankeschön. Zwei Fragen habe ich aber noch:
die erste hat nichts mit der Mathematik zu tun: wie kann ich direkt auf deine Antwort antworten (ohne neuen diskussionsstrang zu beginnen)?
die zweite ist wieder mathematisch veranlagt:
Wie gesagt, ich verstehe jetzt die Anwendung des Binominalkoeffizienten, bei der Suche der Kombinationen von 3 weißen und 7 schwarzen Kugeln. Aber wieso benutze ich auch den Binominalkoeffizienten, wenn ich die Anzahl der Kombinationsmöglichkeiten beim Ziehen von beispielsweise 4 Kugeln haben möchte? Im Buch wwird nicht berücksichtigt, dass 3 weiß und 7 schwarz sind. Die Lösung ist im Buch:
10 über 4.
Das verstehe ich nicht, wieso die 3 weißen und 7 schwarzen Kugeln nicht berücksichtigt werden...
viele Grüße, Curie

        
Bezug
nochmal Binominalkoeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 21:27 So 22.02.2004
Autor: Stefan

Hallo Curie,

> Vielen Dank für deine Erklärung, ich habe sie verstanden.

Das freut mich natürlich sehr. :-)

> Solche mathematischen Sachen kann ich mir am besten merken,
> wenn ich das Zustandekommen von Formeln verstehe, und nicht
> wenn ich sie auswendiglerne.

Das ist eine sehr gute Einstellung. Du bist auf einem guten Weg.

> Also: großes Dankeschön. Zwei
> Fragen habe ich aber noch:
>  die erste hat nichts mit der Mathematik zu tun: wie kann
> ich direkt auf deine Antwort antworten (ohne neuen
> diskussionsstrang zu beginnen)?

Nun, du klickst zunächst auf meine Antwort. Unter meiner Antwort findest du den Schriftzug "Deine Möglichkeiten aktiv zu werden" (oder so ähnlich). Schau dir den Punkt 4 an. Dort steht: "Ich möchte jetzt eine weitere Frage zu dieser Antwort schreiben" (oder so ähnlich). Diesen Punkt 4 klickst du an, schreibst den Text in das dafür vorgesehene Feld, entscheidest dich für eine Bearbeitungszeit (die du hier erfreulich großzügig gewählt hast) und klickst auf "Senden". Das war's. :-)

>  die zweite ist wieder mathematisch veranlagt:
>  Wie gesagt, ich verstehe jetzt die Anwendung des
> Binominalkoeffizienten, bei der Suche der Kombinationen von
> 3 weißen und 7 schwarzen Kugeln. Aber wieso benutze ich
> auch den Binominalkoeffizienten, wenn ich die Anzahl der
> Kombinationsmöglichkeiten beim Ziehen von beispielsweise 4
> Kugeln haben möchte? Im Buch wwird nicht berücksichtigt,
> dass 3 weiß und 7 schwarz sind. Die Lösung ist im Buch:
>  10 über 4.

Das ist schon richtig. Man braucht dafür die Unterscheidung in weiße und schwarze Kugeln nicht. Das hier ist ein zwar ähnliches, aber nicht völlig identisches Problem im Vergleich zu deinem letzten Problem.

Es geht einfach nur um die Frage:

Auf wie viele Möglichkeiten kann ich aus 10 Kugeln 4 Kugeln ziehen, wenn mir die Reihenfolge, mit der ich die Kugeln ziehe, egal ist?

Zunächst mal sollte dir die Fragestellung klar sein. Ist sie es? Wir ziehen die Kugeln normalerweise in dieser Aufgabenstellung mit einem Griff. Dazu gleichwertig ist aber die Fragestellung, auf wie viele Arten man Kugeln nacheinander, aber ohne Beachtung der Reihenfolge zieht. Klar? Dann geht es jetzt weiter...

Gut! Der Trick ist jetzt der folgende: Wir ziehen die Kugeln jetzt erst mal in einer gewissen Reihenfolge und berücksichtigen dann anschließend, dass uns die Reihenfolge eigentlich egal ist.

Ziehen wir also die erste Kugel. Dafür gibt es 10 Möglichkeiten. Wir legen die Kugel nicht zurück. Aus den verbeibenden 9 Kugeln ziehen wir die zweite Kugel. Dafür gibt es logischerweise 9 Möglichkeiten. Für die dritte Kugel gibt es 8 und für die vierte Kugel 7 Möglichkeiten.

Insgesamt gibt es also

[mm]10*9*8*7[/mm]

Möglichkeiten, aus den 10 Kugeln 4 Kugeln in einer bestimmten Reihenfolge zu ziehen.

So, jetzt berücksichtigen wir, dass uns die Reihenfolge eigentlich egal ist.

Wenn wir die 4 Kugeln durchnumerieren, dann wäre eine mögliche Reihenfolge:

[mm]\red{1,2,3,4.}[/mm].

Wie viele Möglichkeiten gibt es diese Kugel untereinander zu vertauschen?

Mit anderen Worten: Wieviele zu dieser Ziehung gleichwertige  Ziehungen gibt es?

Nun, offenbar können wir die Kugeln auf 4!=24 Arten anordnen.

(Kontrolle:

[mm]\red{1,2,3,4}[/mm]
[mm]\red{1,2,4,3}[/mm]
[mm]\red{1,3,2,4}[/mm]
[mm]\red{1,3,4,2}[/mm]
[mm]\red{1,4,2,3}[/mm]
[mm]\red{1,4,3,2}[/mm]
[mm]\red{2,1,3,4}[/mm]
[mm]\red{2,1,4,3}[/mm]
[mm]\red{2,3,1,4}[/mm]
[mm]\red{2,3,4,1}[/mm]
[mm]\red{2,4,1,3}[/mm]
[mm]\red{2,4,3,1}[/mm]
[mm]\red{3,1,2,4}[/mm]
[mm]\red{3,1,4,2}[/mm]
[mm]\red{3,2,1,4}[/mm]
[mm]\red{3,2,4,1}[/mm]
[mm]\red{3,4,1,2}[/mm]
[mm]\red{3,4,2,1}[/mm]
[mm]\red{4,1,2,3}[/mm]
[mm]\red{4,1,3,2}[/mm]
[mm]\red{4,2,1,3}[/mm]
[mm]\red{4,2,3,1}[/mm]
[mm]\red{4,3,1,2}[/mm]
[mm]\red{4,3,2,1}[/mm]

Uff! Das musste jetzt mal sein.)

Wenn wir aber die 4 Kugeln mit Beachtung der Reihenfolge auf [mm]10*9*8*7[/mm] Möglichkeiten ziehen können und es zu jeder Ziehung [mm]1*2*3*4[/mm] gleichwertige andere Ziehungen gibt, dann gibt es insgesamt

[mm]\frac{10*9*8*7}{1*2*3*4}[/mm]

ununterscheibare Ziehungen (d.h. relevante Ziehungen, also solche Ziehungen, bei denen man nicht auf die Reihenfolge achtet).

Nun gilt aber:

[mm]\frac{10*9*8*7}{1*2*3*4} = \frac{10!}{4!\cdot 6!} = {10\choose 4}[/mm].

Alles klar? Die Farben haben hier gar keine Rolle gespielt, darum ging es bei dieser Fragestellung gar nicht. Es war uns egal, ob wir nun weiße oder schwarze Kugeln ziehen. Wichtig war nur, dass wir 4 Kugeln (mit einem Griff oder nacheinander und ohne Beachtung der Reihenfolge) aus 10 Kugeln ziehen.

Liebe Grüße
Stefan

Bezug
                
Bezug
nochmal Binominalkoeffizient: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:02 Di 24.02.2004
Autor: curie

Hallo stefan!

Ja, ich habe es verstanden. Es ist nur, dass ich unbedingt die verschiedenfarbigen kugeln mit in die überlegungen einbeziehen wolle. aber das ist tatsächlich nicht nötig. das ist mir jetzt auch klar.
danke nochmal!
curie

Bezug
                        
Bezug
nochmal Binominalkoeffizient: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:38 So 16.05.2004
Autor: Flotsch23

Hallo zusammen!

Diese Aufgabe beschäftigt mich zur Zeit auch.
Ich habe da noch ein weiteres Problem!!

Wieviele Möglichkeiten gibt es denn, dass unter den n gezogenen Kugeln genau  j weisse sind?

bin sehr dankbar über Hilfe!!

Also danke

Bezug
                                
Bezug
nochmal Binominalkoeffizient: Antwort
Status: (Antwort) fertig Status 
Datum: 01:06 Mo 17.05.2004
Autor: Paulus

Hallo Flotsch23

das würde ich mir etwa so überlegen. Ich machs gleich an einm konkreten Beispiel, du kannst es dann zu Uebung auf den allgemeinen Fall (mit Variablen) übertragen:

Es hat 10 Kugeln, 7 davon sind rot, 3 schwarz.
Die Frage ist, wie gross ist die Wahrscheinlichkeit, beim Ziehen von 5 Kugeln 3 rote zu ziehen.

Um die Kombination 3 rot, 2 schwarz zu erhalten, muss ich von den 7 roten Kugeln 3 herausfischen.
Auf wieviele Arten gelingt mir das? richtig: auf [mm] $\binom{7}{3}$ [/mm] Arten.

Und dann muss ich zu jeder der [mm] $\binom{7}{3}$ [/mm] Arten noch 2 von drei schwarzen Kugeln ziehen, und für 2 aus 3 gibt es [mm] $\binom{3}{2}$ [/mm] Möglichkeiten.

Zusammen also [mm] $\binom{7}{3}*\binom{3}{2}$ [/mm] Möglichkeiten.

Und ich weiss ja, dass die Gesamte Anzahl der Möglichkeiten, 5 Kugeln aus 10 zu ziehen, [mm] $\binom{10}{5}$ [/mm] ist.

Somit ergibt sich für die gesuchte Wahrscheinlichkeit:

[mm] $$\bruch{\binom{7}{3}*\binom{3}{2}}{\binom{10}{5}}$ [/mm]

Alles klar?

mit lieben Grüssen



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de