www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - nochmal Stetigkeit
nochmal Stetigkeit < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nochmal Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:02 Di 17.04.2007
Autor: sancho1980

Aufgabe
Zeigen Sie mithilfe des [mm] \varepsilon-\delta-Kriteriums, [/mm] dass die Wurzelfunktion [mm] \wurzel:[0, \infty[ \to \IR, [/mm] x [mm] \to \wurzel{x} [/mm] stetig ist.

[mm] \varepsilon-\delta-Kriterium: [/mm]
Sei a [mm] \in [/mm] D [mm] \subset \IR, [/mm] und es sei f: D [mm] \to \IR [/mm] gegeben. Dann gilt:
f ist stetig in a
[mm] \gdw [/mm]
[mm] \forall \varepsilon [/mm] > 0 [mm] \exists \delta [/mm] > 0 [mm] \forall [/mm] x [mm] \in [/mm] D: (|x - a| < [mm] \delta \Rightarrow [/mm] |f(x) - f(a)| < [mm] \varepsilon). [/mm]

Hallo,
ich habe oben genannte Aufgabe und eine Musterlösung, verstehe sie aber leider wieder mal nicht:

"Seien a [mm] \in [/mm] [0, [mm] \infty[ [/mm] und [mm] \varepsilon [/mm] > 0 beliebig vorgegeben. Für jedes x [mm] \in [/mm] [0, [mm] \infty[ [/mm] mit x [mm] \not= [/mm] a gilt

[mm] |\wurzel{x} [/mm] - [mm] \wurzel{a}| [/mm] = [mm] |\bruch{(\wurzel{x} - \wurzel{a})(\wurzel{x} - \wurzel{a})}{\wurzel{x} + \wurzel{a}}| [/mm]

Da aufgrund der Dreiecksungleichung

[mm] |\wurzel{x}-\wurzel{a}| \le |\wurzel{x}| [/mm] + | - [mm] \wurzel{a} [/mm] | = [mm] \wurzel{x} [/mm] + [mm] \wurzel{a} [/mm]

gilt, folgt

[mm] |\wurzel{x} [/mm] - [mm] \wurzel{a}| [/mm] = [mm] \bruch{|x - a|}{\wurzel{x} + \wurzel{a}} \le \bruch{|x - a|}{|\wurzel{x} - \wurzel{a}|}, [/mm] d.h.

[mm] |\wurzel{x} [/mm] - [mm] \wurzel{a}|^2 \le [/mm] |x - a|."

Hier muss ich mal kurz unterbrechen. Wie kommt man denn von

[mm] |\wurzel{x} [/mm] - [mm] \wurzel{a}| [/mm] = [mm] \bruch{|x - a|}{\wurzel{x} + \wurzel{a}} \le \bruch{|x - a|}{|\wurzel{x} - \wurzel{a}|} [/mm]

auf

[mm] |\wurzel{x} [/mm] - [mm] \wurzel{a}|^2 \le [/mm] |x - a|??

"Die letzte Beziehung gilt sogar im Fall x = a. Setzen wir [mm] \delta [/mm] := [mm] \varepsilon^2, [/mm] so gilt (Monotonie der Wurzelfunktion!)

[mm] |\wurzel{x} [/mm] - [mm] \wurzel{a}| \le \wurzel{|x - a|} [/mm] < [mm] \wurzel{\delta} [/mm] = [mm] \varepsilon [/mm]

für jedes x [mm] \in [/mm] [0, [mm] \infty[ [/mm] mit |x - a| < [mm] \delta." [/mm]

Ich versteh die Schlussfolgerung leider gar nicht. Wie kommt man denn von den Ungleichungen zwischen x und a auf einmal auf [mm] \varepsilon [/mm] und [mm] \delta. [/mm] Ich versteh den Ansatz irgendwie nicht. Kann mir den bitte einer erklären?

Danke,

Martin

        
Bezug
nochmal Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:34 Di 17.04.2007
Autor: angela.h.b.


> "Seien a [mm]\in[/mm] [0, [mm]\infty[[/mm] und [mm]\varepsilon[/mm] > 0 beliebig
> vorgegeben. Für jedes x [mm]\in[/mm] [0, [mm]\infty[[/mm] mit x [mm]\not=[/mm] a gilt
>  
> [mm]|\wurzel{x}[/mm] - [mm]\wurzel{a}|[/mm] = [mm]|\bruch{(\wurzel{x} - \wurzel{a})(\wurzel{x} - \wurzel{a})}{\wurzel{x} + \wurzel{a}}|[/mm]
>  
> Da aufgrund der Dreiecksungleichung
>  
> [mm]|\wurzel{x}-\wurzel{a}| \le |\wurzel{x}|[/mm] + | - [mm]\wurzel{a}[/mm] |
> = [mm]\wurzel{x}[/mm] + [mm]\wurzel{a}[/mm]
>
> gilt, folgt
>  
> [mm]|\wurzel{x}[/mm] - [mm]\wurzel{a}|[/mm] = [mm]\bruch{|x - a|}{\wurzel{x} + \wurzel{a}} \le \bruch{|x - a|}{|\wurzel{x} - \wurzel{a}|},[/mm]
> d.h.
>  
> [mm]|\wurzel{x}[/mm] - [mm]\wurzel{a}|^2 \le[/mm] |x - a|."
>  
> Hier muss ich mal kurz unterbrechen. Wie kommt man denn
> von
>  
> [mm]|\wurzel{x}[/mm] - [mm]\wurzel{a}|[/mm] = [mm]\bruch{|x - a|}{\wurzel{x} + \wurzel{a}} \le \bruch{|x - a|}{|\wurzel{x} - \wurzel{a}|}[/mm]
>  
> auf
>  
> [mm]|\wurzel{x}[/mm] - [mm]\wurzel{a}|^2 \le[/mm] |x - a|??

Hallo,

das ist keine Zauberei:

[mm]|\wurzel{x}[/mm] - [mm]\wurzel{a}|[/mm] = [mm]\bruch{|x - a|}{\wurzel{x} + \wurzel{a}} \le \bruch{|x - a|}{|\wurzel{x} - \wurzel{a}|}[/mm]

==> [mm]|\wurzel{x}[/mm] - [mm]\wurzel{a}|[/mm]  [mm] \le \bruch{|x - a|}{|\wurzel{x} - \wurzel{a}|}. [/mm]

Und nun beide Seiten mit [mm] {|\wurzel{x} - \wurzel{a}|} [/mm] multiplizieren.


>  
> "Die letzte Beziehung gilt sogar im Fall x = a. Setzen wir
> [mm]\delta[/mm] := [mm]\varepsilon^2,[/mm] so gilt (Monotonie der
> Wurzelfunktion!)
>  
> [mm]|\wurzel{x}[/mm] - [mm]\wurzel{a}| \le \wurzel{|x - a|}[/mm] <
> [mm]\wurzel{\delta}[/mm] = [mm]\varepsilon[/mm]
>  
> für jedes x [mm]\in[/mm] [0, [mm]\infty[[/mm] mit |x - a| < [mm]\delta."[/mm]
>  
> Ich versteh die Schlussfolgerung leider gar nicht. Wie
> kommt man denn von den Ungleichungen zwischen x und a auf
> einmal auf [mm]\varepsilon[/mm] und [mm]\delta.[/mm] Ich versteh den Ansatz
> irgendwie nicht. Kann mir den bitte einer erklären?

Ich nehme mal an, daß Du ganz am Anfang etwas vergessen/falsch abgeschrieben hast.

Statt

> "Seien a [mm]\in[/mm] [0, [mm]\infty[[/mm] und [mm]\varepsilon[/mm] > 0 beliebig
> vorgegeben. Für jedes x [mm]\in[/mm] [0, [mm]\infty[[/mm] mit x [mm]\not=[/mm] a gilt

>

müßte dort etwas stehen wie

"Seien a [mm]\in[/mm] [0, [mm]\infty[[/mm] und [mm]\varepsilon[/mm] > 0 beliebig vorgegeben.
Für jedes x [mm] \in |a-\delta,a+\delta| [/mm] mit x [mm]\not=[/mm] a gilt..."

oder "...für jedes x [mm] \in U_{/varepsilon}(a)..." [/mm]

oder "... für jedes x aus einer [mm] \varepsilon-Umgebung [/mm] von a...".

Der Gedanke ist ja, daß man für beliebig vorgegebenes [mm] \varepsilon [/mm] > 0 ein hierzu passendes [mm] \delta [/mm] findet, so daß das [mm] \varepsilon [/mm] - [mm] \delta [/mm] - Kriterium erfüllt ist.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de