www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - nochmal quersumm
nochmal quersumm < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nochmal quersumm: korrektur
Status: (Frage) beantwortet Status 
Datum: 18:33 Do 15.03.2007
Autor: Karlchen

Aufgabe
Bestimmen sie alle dreistelligen positiven ganzen Zahlen mit der Quersumme 12, bei denen die erste Ziffer doppelt so groß ist wie die letzte.

tachen!

so hab noch ma nen porblem. Also hab die Aufgabe zwar ausgerechnet,a ber keine ganzen Zahlen erhalten, weil ich denke es fhelt eine weitere Bedingung um diese AUfgabe zu lösen

q(n)=a+b+c=12
a=c*2 richtig so?

als gleichungen habe ich also:
I. a+b+c= 12
II. 2c=a
III. 12-a-c=b

II. umgeformt erhalte ich [mm] c=\bruch{a}{2} [/mm]

das in III. eingesetzt ergibt [mm] 12-a-\bruch{a}{2}=b [/mm]
[mm] -a=b-12+\bruch{a}{2} [/mm]

[mm] a=-b+12-\bruch{a}{2} [/mm]

das ganze wieder in III. einsetzten: [mm] b=12-(-b+12-\bruch{a}{2})-\bruch{a}{2} [/mm]
= b

sooo, ja ich weiß, dass das was ich gemacht habe falsch ist, aber ich weiß nciht wie ich es anders machen könnte, wäre gaaanz lieb wenn mir nochmal jemand helfen könnte.

Gruß Karlchen





        
Bezug
nochmal quersumm: Antwort
Status: (Antwort) fertig Status 
Datum: 19:14 Do 15.03.2007
Autor: VNV_Tommy

Hallo nochmals! ;-)

> Bestimmen sie alle dreistelligen positiven ganzen Zahlen
> mit der Quersumme 12, bei denen die erste Ziffer doppelt so
> groß ist wie die letzte.
>  tachen!
>  
> so hab noch ma nen porblem. Also hab die Aufgabe zwar
> ausgerechnet,a ber keine ganzen Zahlen erhalten, weil ich
> denke es fhelt eine weitere Bedingung um diese AUfgabe zu
> lösen
>  
> q(n)=a+b+c=12
>  a=c*2 richtig so?
>  
> als gleichungen habe ich also:
> I. a+b+c= 12
>  II. 2c=a
>  III. 12-a-c=b
>  
> II. umgeformt erhalte ich [mm]c=\bruch{a}{2}[/mm]
>  
> das in III. eingesetzt ergibt [mm]12-a-\bruch{a}{2}=b[/mm]
>  [mm]-a=b-12+\bruch{a}{2}[/mm]
>  
> [mm]a=-b+12-\bruch{a}{2}[/mm]
>  
> das ganze wieder in III. einsetzten:
> [mm]b=12-(-b+12-\bruch{a}{2})-\bruch{a}{2}[/mm]
>  = b
>  
> sooo, ja ich weiß, dass das was ich gemacht habe falsch
> ist, aber ich weiß nciht wie ich es anders machen könnte,
> wäre gaaanz lieb wenn mir nochmal jemand helfen könnte.

Du hast im Grunde nichts falsch gemacht, du hast nachgewiesen, dass b=b ist. ;-)

> Gruß Karlchen

Gleichung I und II deines Gleichungssystems sind in Ordnung. Gleichung III ist dadurch entstanden, daß du I umgeformt hast. Dieser Schritt ist nicht optimal, da die mathematische Aussage in III die selbe ist wie vorher in I. Grundsätzlich kannst du dir merken, dass die Gleichungen deines Gleichungssystems durch die Angaben in deiner Aufgabenstellung entsehen müssen.

Generell gilt, daß ein Gleichungssystem dann eindeutig lösbar ist, wenn du für jede deiner Variablen eine Gleichung aufstellen kannst. Ein solches Gleichungssystem ist dann bestimmt (z.B. Variablen x,y,z und 3 Gleichungen). Ein Gleichungssystem ist dann unterbestimmt, wenn es mehr Variablen als Gleichungen gibt (z.B. Variablen x,y,z aber nur 2 Gleichungen). Ein Gleichungssystem ist überbestimmt, wenn mehr Gleichungen existieren als Variablen vorhanden sind (z.B. Variablen x,y,z und 4 Gleichungen).

In deinem Fall existieren 3 Variablen (a,b,c), es gibt aber nur 2 Gleichungen, die sich dabei aufstellen lassen (--> unterbestimmtes Gleichungssystem!). In solchen Fällen existiert keine eindeutige Lösung, sondern bestenfalls eine Reihe von Lösungen (das lässt bei deiner Aufgabe auch die Aufgabenstellung vermuten, denn du sollst alle dreistelligen Zahlen angeben, auf welche die Beschränkungen zutreffen).

Nun zur Lösung

Gegeben sind: a,b,c [mm] \in \IN [/mm]
I. a+b+c= 12
II. 2c=a

Du kannst nun II in I einsetzen und erhälst:

2c+b+c=12

Zusammengefasst und nach b umgestellt erhält man:

b=12-3c

In diese Gleichung kannst du nun für c alles Zahlen von 0 bis 9 einsetzen und das entsprechende b ermitteln:

c=0 --> [mm] \red{b=12} [/mm]
c=1 --> b=9
c=2 --> b=6
c=3 --> b=3
c=4 --> b=0
c=5 --> [mm] \red{b=-3} [/mm]

An dieser Stelle kann man aufhören, da für weiter ansteigende c das b immer negativ wird. Laut Aufgabe sollen aber die Zahlen ganzzahlig und positiv sein. Die (Teil-)Lösung c=0 und b=12 entfällt ebenfalls, da eine Ziffer der Zahl immer nur einstellig sein darf. Von Interesse sind demnach nur die Lösungen für c=1 bis c=4.

Nun gilt es noch, a zu bestimmen. Dazu setzt du die eben ermittelten Werte für c in die Gleichung zur Bestimmung von a (Gleichung II: a=2c) ein. Es ergibt sich:

c=1 --> b=9 --> a=2
c=2 --> b=6 --> a=4
c=3 --> b=3 --> a=6
c=4 --> b=0 --> a=8

Somit gibt es 4 Zahlen, welche die in der Aufgabenstellung genannten Bedingungen erfüllen:

[mm] Zahl_{1}=291 [/mm]
[mm] Zahl_{2}=462 [/mm]
[mm] Zahl_{3}=633 [/mm]
[mm] Zahl_{4}=804 [/mm]

Das wars schon. ;-)

Gruß,
Tommy

Bezug
                
Bezug
nochmal quersumm: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:51 Do 15.03.2007
Autor: Karlchen

WOW! danke für diese ausfürliche erklörung, echt!
is jez im nachhinein zwar ganz einfach, aber alleine wäre ich nciht drauf gekommen. dankeeee^^

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de