normale Körpererweiterung < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:05 Fr 02.05.2014 | Autor: | DrRiese |
Aufgabe | Für eine endliche Körpererweiterung E eines Körpers K sind aequivalent:
i) Die Körpererweiterung E von K ist normal
ii) Der Körper E ist der Zerfaellungskoerper eines Polynoms f(x) [mm] \in [/mm] K[x] |
Hallo, ich versuche die Logik dieser obigen Aussage nachzuvollziehen. Leider ist mir nicht ganz klar, warum dies gilt. Eine Erweiterung ist normal, wenn diese algebraisch ist und jedes irreduzible Polynom aus K[x], das in E eine Nullstelle hat, komplett ueber E zerfaellt. Aber wieso haben wir eine normale Erweiterung, wenn wir nur eines finden? Leider war der Beweis aus der Vorlesung auch nicht ganz erhellend. Hat jemand eine Idee?
LG :)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:24 Sa 03.05.2014 | Autor: | felixf |
Moin!
> Für eine endliche Körpererweiterung E eines Körpers K
> sind aequivalent:
> i) Die Körpererweiterung E von K ist normal
> ii) Der Körper E ist der Zerfaellungskoerper eines
> Polynoms f(x) [mm]\in[/mm] K[x]
>
> Hallo, ich versuche die Logik dieser obigen Aussage
> nachzuvollziehen. Leider ist mir nicht ganz klar, warum
> dies gilt. Eine Erweiterung ist normal, wenn diese
> algebraisch ist und jedes irreduzible Polynom aus K[x], das
> in E eine Nullstelle hat, komplett ueber E zerfaellt. Aber
> wieso haben wir eine normale Erweiterung, wenn wir nur
> eines finden? Leider war der Beweis aus der Vorlesung auch
> nicht ganz erhellend. Hat jemand eine Idee?
Ich denke, es ist etwas einfacher, wenn man eine dritte aequivalente Bedingung hinzufuegt:
iii) Ist $L$ ein algebraischer Abschluss von $E$ und ist $f : E [mm] \to [/mm] L$ ein $K$-Homomorphismus, dann gilt $f(E) [mm] \subseteq [/mm] E$.
Die Implikationen "(ii) [mm] $\Rightarrow$ [/mm] (iii) [mm] $\Rightarrow$ [/mm] (i)" sind damit recht einfach zu zeigen, und "(i) [mm] $\Rightarrow$ [/mm] (ii)" ist auch nicht so schwer (in Charakteristik 0 oder bei endlichen Koerpern geht das sogar sehr einfach, wenn man den Satz vom primitiven Element hat).
Die Idee zu "(ii) [mm] $\Rightarrow$ [/mm] (iii)" ist, dass $f : E [mm] \to [/mm] L$ bereits eindeutig durch [mm] $f(\alpha_1), \dots, f(\alpha_n)$ [/mm] bestimmt ist, wenn $E = [mm] K(\alpha_1, \dots, \alpha_n)$ [/mm] ist. Wenn jedoch [mm] $\alpha_1, \dots, \alpha_n$ [/mm] alle Nullstellen eines Polynoms $f [mm] \in [/mm] K[X]$ sind, dann gilt [mm] $\{ f(\alpha_1), \dots, f(\alpha_n) \} [/mm] = [mm] \{ \alpha_1, \dots, \alpha_n \}$, [/mm] womit $f(E) = E$ sein muss.
Fuer die Implikation "(iii) [mm] $\Rightarrow$ [/mm] (i)" nimmt man ein irreduzibles Polynom $f [mm] \in [/mm] K[X]$ mit Nullstelle [mm] $\alpha \in [/mm] E$. Ist nun [mm] $\beta$ [/mm] eine weitere Nullstelle von $E$, so gibt es einen $K$-Homomorphismus [mm] $g_1 [/mm] : [mm] K(\alpha) \to K(\beta)$ [/mm] mit [mm] $g_1(\alpha) [/mm] = [mm] \beta$. [/mm] Dieser laesst sich nun mit ein paar technischen Tricks zu einem Homomorphismus $g : E [mm] \to [/mm] L$ fortsetzen. Wegen $g(E) [mm] \subseteq [/mm] E$ nach (iii) muss allerdings auch [mm] $\beta [/mm] = [mm] g(\alpha) \in [/mm] g(E) [mm] \subseteq [/mm] E$ sein. Da [mm] $\beta$ [/mm] eine beliebige weitere Nullstelle von $f$ war, liegen also alle Nullstellen von $f$ in $E$.
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:06 Mo 05.05.2014 | Autor: | DrRiese |
Achso, ok, vielen Dank
|
|
|
|