www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - normalenvektoren parallel eben
normalenvektoren parallel eben < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

normalenvektoren parallel eben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:01 So 18.11.2007
Autor: mickeymouse

Aufgabe
bestimme drei normalenvektoren von [mm] \vec{a}, [/mm] von denen jeder zu einer koordinatenebene parallel ist:
a) [mm] \vec{a}=\begin{pmatrix} -2 \\ 3 \\ 4 \end{pmatrix} [/mm]
b) [mm] \vec{a}=\begin{pmatrix} 0 \\ 0 \\ 7 \end{pmatrix} [/mm]

bisher wars halt immer so, dass die ebene in paramterform angegeben war und man musste eben den normalenvektor berechnen. da kam dann nie eine eindeutige lösung raus, sondern immer alle vielfachen des vektors, den man berechnet hat, da man ja ein unterbestimmtes gleichungssystem hatte.
jetzt bei dieser aufgabe brauch ich erst mal alle koordinatenebenen in der parameterform, oder? aber wie schaut die dann aus? es muss doch dann eine koordinate 0 sein, oder? aber wie schriebt man denn die koordinatenebenen in parameterform?
bei der aufgabe a) kommt raus: [mm] \begin{pmatrix} 0 \\ 4 \\ -3 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \\ 0 \end{pmatrix} [/mm]
wieso sinds denn jetzt auf einmal eindeutige ergebnisse?
bei der b) kommen in dem vektor ja auch schon zwei 0er vor, was muss ich dann beachten?
lösung der b) müsste sein:
[mm] \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} [/mm]

danke...:)

        
Bezug
normalenvektoren parallel eben: unendlich viele Lösungen
Status: (Antwort) fertig Status 
Datum: 16:52 So 18.11.2007
Autor: Loddar

Hallo mickeymouse!


Auch hier gibt es selbstverständlich jeweils unendlich viele Lösungen bei den gesuchten Vektoren.

Allerdings wurden hier jeweils die kleinstmöglichen ganzzahligen Lösungen für die einzelnen Koordinaten gewählt.


Gruß
Loddar


Bezug
        
Bezug
normalenvektoren parallel eben: Antwort
Status: (Antwort) fertig Status 
Datum: 17:18 So 18.11.2007
Autor: Humpf

Die Koordinatenebenen in Parameterform zu schreiben, geht folgendermaßen:

Die Parameterform für Ebenen ist gegeben durch einen Ortsvektor und zwei Richtungsvektoren (bzw. deren Vielfaches):

[mm] \overrightarrow{x} [/mm] = [mm] \overrightarrow{blabla} [/mm] + [mm] \lambda \overrightarrow{a}+ \mu \overrightarrow{b} [/mm]  

Den Ortsvektor kann man leicht wählen, da alle Koordinatenebenen durch den Ursprung gehen:
[mm] $\vec{blabla}=\begin{pmatrix} 0 \\ 0 \\ 0\end{pmatrix} [/mm] $

Die beiden Richtungsvektoren hängen jetzt von der jeweiligen Ebene ab. Sie müssen beide bei der Achse, zu der die Koordinatenebene nicht parallel ist, als Koeffizienten null haben.

Als Beispiel (x2-x3-Ebene):

[mm] $\vec{x}=\begin{pmatrix} 0 \\ 0 \\ 0\end{pmatrix} [/mm] $ + [mm] \lambda \begin{pmatrix} 0 \\ a2 \\ a3\end{pmatrix} [/mm] + [mm] \mu \begin{pmatrix} 0 \\ b2 \\ b3\end{pmatrix} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de