www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - normalvektoren bestimmen
normalvektoren bestimmen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

normalvektoren bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:11 So 08.10.2006
Autor: babo

Aufgabe
geg.:  e1: [mm] \vec{x}= \vektor{1 \\ -1 \\ 2} +\lambda\vektor{1 \\ 0 \\ -2} +\mu\vektor{0 \\ 1 \\ 2} [/mm]
          e1: [mm] \vec{x}= \vektor{-2 \\ a \\ 0} +\lambda\vektor{1 \\ -2 \\ b} +\mu\vektor{c \\ 2 \\ 8} [/mm]

Bestimmen Sie die reellen Zahlen a,b,c so  das  e1 und e2 die gleiche Ebene darstellen.


Hallo,

ich steh im Moment voll auf den Schlauch ..

mein Lösungsanssatz war die Normalvektoren der beiden Ebenen zu finden und c und b so bestimmen das die Normalvektoren [mm] \vec{ne1} [/mm] und [mm] \vec{ne2} [/mm] l.a. werden.

[mm] \vec{ne1}= \mu\vektor{2 \\ -2 \\ 1}; \vec{ne2}= \mu\vektor{-16-2b \\ bc-8 \\ 2+ 2c} [/mm]

Meine ergebnisse sind dann c= -3/2  und   b= -20/3

Damit lässt sich aber das Lsys der normalvektoren nicht lösen.
Würde mcih freuen wenn mir jemand hilft. Danke im Voraus!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
normalvektoren bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:07 So 08.10.2006
Autor: M.Rex


> geg.:  e1: [mm]\vec{x}= \vektor{1 \\ -1 \\ 2} +\lambda\vektor{1 \\ 0 \\ -2} +\mu\vektor{0 \\ 1 \\ 2}[/mm]
>  
>           e1: [mm]\vec{x}= \vektor{-2 \\ a \\ 0} +\lambda\vektor{1 \\ -2 \\ b} +\mu\vektor{c \\ 2 \\ 8}[/mm]
>  
> Bestimmen Sie die reellen Zahlen a,b,c so  das  e1 und e2
> die gleiche Ebene darstellen.
>  
>
> Hallo,
>
> ich steh im Moment voll auf den Schlauch ..
>  
> mein Lösungsanssatz war die Normalvektoren der beiden
> Ebenen zu finden und c und b so bestimmen das die
> Normalvektoren [mm]\vec{ne1}[/mm] und [mm]\vec{ne2}[/mm] l.a. werden.
>  
> [mm]\vec{ne1}= \mu\vektor{2 \\ -2 \\ 1}; \vec{ne2}= \mu\vektor{-16-2b \\ bc-8 \\ 2+ 2c}[/mm]
>  
> Meine ergebnisse sind dann c= -3/2  und   b= -20/3
>  
> Damit lässt sich aber das Lsys der normalvektoren nicht
> lösen.
>  Würde mcih freuen wenn mir jemand hilft. Danke im Voraus!
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Hallo

Mach es dir doch einfacher und berechnen den Normalenvektor mit dem Kreuzprodukt der Richtungsvektoren
[Dateianhang nicht öffentlich]
Dass heisst bei dir:
[mm] \vec{n_{1}}=\vektor{1\\0\\-2}\times\vektor{0\\1\\2} [/mm]
und [mm] \vec{n_{2}}=\vektor{1\\-2\\b}\times \vektor{c\\2\\8}. [/mm]

SORRY, ich dachte, das wäre schon das Problem.

Nun zur eigentlichen Frage:

Jetzt kannst du die Parameterform der ersten Ebene in die Normalenform der zweiten einsetzen, und bekommst dann eine Gleichung mit a, b und c.

Dasselbe tust du mit [mm] E_{1}, [/mm] dann erhältst du einezweite Gleichung.

Die dritte Gleichung bekommst du,indem du dafür sorgst, dass die Normierten Normalenvektoren parallel werden, d.h.

[mm] \bruch{\vektor{-2\\2\\1}}{|\vektor{-2\\2\\1}|}=\bruch{\vektor{16-2b\\bc-8\\2+2c}}{|\vektor{16-2b\\bc-8\\2+2c}|} [/mm]

Hilft das weiter?

Marius



Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de