www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - nullstellen trig.funtionen
nullstellen trig.funtionen < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nullstellen trig.funtionen: Frage
Status: (Frage) beantwortet Status 
Datum: 17:46 So 08.05.2005
Autor: SunnyD

so HI bin neu hier
In der Schule haben wir mit trigonometrischen Funktionen begonnen aber ich versteh immer noch nicht wie man die Nullstellen berechnet!?!

habe die funktion f(x)=sin(x)+cos(x)
die Funktion soll im Bereich - [mm] \pi \le [/mm] x  [mm] \le [/mm] 2 [mm] \pi [/mm] untersucht werden
bilde zu erst die 3 Ableitungen f'(x)=cos(x)-sin(x)
                                                f''(x)=-sin(x)-cos(x)
                                               f'''(x)=-cos(x)+sin(x)
dann folgt die Berechnung vom y-Achsenschnittpunkt
y=f(0)=sin(0)+cos(0) [mm] \Rightarrow [/mm] y=1

dann kommen die nullstellen dran
f(x)=0 [mm] \Rightarrow [/mm] sin(x)+cos(x)=0 |-cos(x)
                                         sin(x)=-cos(x) |:cos(x)
                                         tan(x)=-1 [mm] \Rightarrow [/mm] -45°
[mm] x=-\bruch{4}{4} \pi [/mm] +-k [mm] \* \pi [/mm]
wie rechne ich jetzt weiter!?!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
nullstellen trig.funtionen: Alle Nullstellen
Status: (Antwort) fertig Status 
Datum: 18:02 So 08.05.2005
Autor: MathePower

Hallo,

> dann kommen die nullstellen dran
>  f(x)=0 [mm]\Rightarrow[/mm] sin(x)+cos(x)=0 |-cos(x)
>                                           sin(x)=-cos(x)
> |:cos(x)
>                                           tan(x)=-1
> [mm]\Rightarrow[/mm] -45°
>  [mm]x=-\bruch{4}{4} \pi[/mm] +-k [mm]\* \pi[/mm]

das sind nicht alle Nullstellen:

[mm]\begin{gathered} f(x)\; = \;\sin (x)\; + \;\cos (x)\; = \;0 \hfill \\ \Leftrightarrow \;\cos (x)\;\left( {1\; + \;\tan (x)} \right)\; = \;0 \hfill \\ \Rightarrow \;\cos (x)\; = \;0\; \vee \;1\; + \;\tan (x)\; = \;0 \hfill \\ \end{gathered} [/mm]

> wie rechne ich jetzt weiter!?!

Berechen alle möglichen Nullstellen im Definitionsbereich.

Gruß
MathePower

Bezug
                
Bezug
nullstellen trig.funtionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:42 So 08.05.2005
Autor: Zwerglein

Hi, MathePower,

> das sind nicht alle Nullstellen:
>  
> [mm]\begin{gathered} f(x)\; = \;\sin (x)\; + \;\cos (x)\; = \;0 \hfill \\ \Leftrightarrow \;\cos (x)\;\left( {1\; + \;\tan (x)} \right)\; = \;0 \hfill \\ \Rightarrow \;\cos (x)\; = \;0\; \vee \;1\; + \;\tan (x)\; = \;0 \hfill \\ \end{gathered}[/mm]
>  

Da hast Du Dich ein bissl "verrannt"!
Sicher muss man den Fall: cos(x) = 0 auch untersuchen.
Aber der ist schnell "abgetan", denn: der cos wird null bei allen ungeradzahligen Vielfachen von [mm] \bruch{\pi}{2}. [/mm]
An diesen Stellen aber ist der sin +1 oder -1.
Demnach ist dort sin(x)+cos(x) jedenfalls nicht =0.
Heißt: Dieser Fall ist auszuschließen und wir können uns auf tan(x) = -1 beschränken!


Bezug
        
Bezug
nullstellen trig.funtionen: weitere Antwort
Status: (Antwort) fertig Status 
Datum: 18:33 So 08.05.2005
Autor: Zwerglein

Hi, Sunny,

>  
> habe die funktion f(x)=sin(x)+cos(x)
> die Funktion soll im Bereich - [mm]\pi \le[/mm] x  [mm]\le[/mm] 2 [mm]\pi[/mm]
> untersucht werden
>  bilde zu erst die 3 Ableitungen f'(x)=cos(x)-sin(x)
>                                                  
> f''(x)=-sin(x)-cos(x)
>                                                
> f'''(x)=-cos(x)+sin(x)
>  dann folgt die Berechnung vom y-Achsenschnittpunkt
>  y=f(0)=sin(0)+cos(0) [mm]\Rightarrow[/mm] y=1
>  
> dann kommen die nullstellen dran
>  f(x)=0 [mm]\Rightarrow[/mm] sin(x)+cos(x)=0 |-cos(x)
>                                           sin(x)=-cos(x)
> |:cos(x)
>                                           tan(x)=-1
> [mm]\Rightarrow[/mm] -45°

Winkel im Gradmaß kannst Du bei der Diskussion von trig.Fkt. gleich weglassen!

>  [mm]x=-\bruch{4}{4} \pi[/mm] +-k [mm]\* \pi[/mm]

Muss wohl ein Tippfehler vorliegen! Richtig wäre: x = [mm] -\bruch{\pi}{4} [/mm] + [mm] k*\pi [/mm]

Nun musst Du schauen, welche der Nullstellen in Deiner Definitionsmenge liegen:

k=0: x= [mm] -\bruch{\pi}{4} [/mm]  "liegt drin"

k=1: x= [mm] -\bruch{\pi}{4}+\pi [/mm] = [mm] \bruch{3}{4}\pi [/mm] "liegt drin"

k=2: x= [mm] -\bruch{\pi}{4}+2*\pi [/mm] = [mm] \bruch{7}{4}\pi [/mm] "liegt drin"

k=3: x= [mm] -\bruch{\pi}{4}+3*\pi [/mm] = [mm] \bruch{11}{4}\pi [/mm] "liegt scho nimmer drin".

Also: 3 Nullstellen.

Und mit den Extremstellen (NS der 1. Ableitung) bzw. Wendestellen (NS der 2. Ableitung) machst Du's genauso.

Dabei vermute ich (sicher nicht zu Unrecht),
dass die Nullstellen der Funktion gleichzeitig Wendestellen sind und
dass die Extremalstellen genau in der Mitte zwischen den Nullstellen liegen werden.
(Zum Vergleich: Tiefpunkte bei [mm] x=-\bruch{3}{4}\pi [/mm] und [mm] x=\bruch{5}{4}\pi; [/mm]
Hochpunkt bei x= [mm] \bruch{\pi}{4}. [/mm]
Die "Randextrema" bei [mm] x=-\pi [/mm] und [mm] x=2\pi [/mm] erwähne ich hier "nur am Rande"!)


Bezug
                
Bezug
nullstellen trig.funtionen: weitere frage
Status: (Frage) beantwortet Status 
Datum: 19:48 Mo 09.05.2005
Autor: SunnyD

okay danke habs jetzt so einigermaßen verstanden ;)

hab jetzt die Funktion
f(x)=3sin(x)-4cos(x) setze 0

3sin(x)-4cos(x)=0
        3sin(x)=4cos(x)
         tan(x)= [mm] \bruch{4}{3} [/mm]   ist das richtig? wenn ja, wie rechne ich weiter?

Bezug
                        
Bezug
nullstellen trig.funtionen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:42 Mo 09.05.2005
Autor: Fabian

Hallo SunnyD
>  
> hab jetzt die Funktion
> f(x)=3sin(x)-4cos(x) setze 0
>  
> 3sin(x)-4cos(x)=0
>          3sin(x)=4cos(x)
>           tan(x)= [mm]\bruch{4}{3}[/mm]   ist das richtig? wenn ja,
> wie rechne ich weiter?

Wenn keine Einschränkungen vorliegen , dann einfach mit arctan(x) multiplizieren!

[mm] x=arctan(\bruch{4}{3})+k*\pi [/mm]

Den arctan findest du auf deinem Taschenrechner unter [mm] tan^{-1} [/mm] . Der actan(x) ist die Umkehrfunktion von tan(x)!

Gruß Fabian

Bezug
                                
Bezug
nullstellen trig.funtionen: Eine kleine Bitte
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:53 Mo 09.05.2005
Autor: Loddar

Hallo Fabian!

Bitte, bitte nicht schreiben:

" ... mit arctan(x) multiplizieren!"

Das ist nicht richtig, das ist falsch! Es muß heißen:

"Wir wenden auf beiden Seiten der Gleichung den [mm] $\arctan$ [/mm] an."


Dieser Vorgang hat nichts mit Multiplikation zu tun. Nur für das nächste Mal ...


Gruß
Loddar


Bezug
                                
Bezug
nullstellen trig.funtionen: Frage
Status: (Frage) beantwortet Status 
Datum: 21:26 Mo 09.05.2005
Autor: SunnyD

der actran von  [mm] \bruch{4}{3} [/mm] is ja 53° muss ich es jetzt ins bogenmaß umrechen also 53 [mm] \* \pi [/mm] /180 [mm] \approx [/mm] 0,93
also x=0,93+k [mm] \* \pi [/mm] ? bei dem anderen Beispiel war ich es gewohnt als Bruch zu schreiben, wie würde es dann heißen!?!

Bezug
                                        
Bezug
nullstellen trig.funtionen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:39 Mo 09.05.2005
Autor: Max

Hallo SunnyD,

normalerwiese müsstest du dir auch direkt das Ergebnis von [mm] $\arctan\left(\frac{4}{3}\right)$ [/mm] im Bogenmaß ausgeben lassen können. Versuch mal an deinem Taschenrechner den Mode umzustellen, dass du im Bogenmaß rechnest. Dieser Mode wird normalerweise durch RAD oder R symbolisiert.

Gruß Max

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de