www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Öffnungswinkel v. Parabolant.
Öffnungswinkel v. Parabolant. < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Öffnungswinkel v. Parabolant.: Frage
Status: (Frage) beantwortet Status 
Datum: 13:06 Mi 10.08.2005
Autor: kruder77

Hallo,

ich habe gerade eine Aufgabe vor mir, wo der halbe Öffnungswinkel einer Parabolantenne  [mm] \alpha [/mm] zu ermitteln ist. Gegeben: f=14 GHz und d=60cm.

Als erstes wird [mm] \lambda [/mm] =  [mm] \bruch{c}{f} [/mm] berechnet. das ergibt dann eine Wellenlänge von 2,14 cm.

Als nächstes  kommt :  [mm] sin(\alpha) [/mm] =  1,22* [mm] \bruch{\lambda}{d} [/mm]
doch wo kommt der Faktor 1,22 her?

Grüße & Danke
kruder77

        
Bezug
Öffnungswinkel v. Parabolant.: Beugungseffekte
Status: (Antwort) fertig Status 
Datum: 15:14 Mi 10.08.2005
Autor: matrinx

Hallo!
Ich denke das hat was mit Beugungseffekten an der Schüssel zu tun. Ganz sicher bin ich mir da nicht, aber Deine Formeln finden sich auch bei der Berechnung von Teleskopen wieder...
(zit. "Das Winkelauflösungsvermögen eines Spiegelteleskops wird theoretisch begrenzt durch die Beugung am Hauptspiegel. Bekanntlich erhält man für das erste Minimum der Beugungsfigur b(j) einer punktförmigen Lichtquelle einen Winkeldurchmesser
[mm] \alpha = 1.22 \bruch{\lambda}{D_{T}}[/mm].")

wobei [mm] sin(\alpha) [/mm] in dem Bereich [mm] \approx \alpha [/mm] ist. Google mal nach "Beugungseffekten" und "1.22" vielleicht findet sich da was.
Grüsse
Martin

Bezug
        
Bezug
Öffnungswinkel v. Parabolant.: Beugung an Loch!
Status: (Antwort) fertig Status 
Datum: 13:00 Fr 12.08.2005
Autor: leduart

Hallo kruder

> Als nächstes  kommt :  [mm]sin(\alpha)[/mm] =  1,22*
> [mm]\bruch{\lambda}{d}[/mm]
> doch wo kommt der Faktor 1,22 her?

Meist behandelt man nur die Beugung am Spalt, dann ist  [mm]sin(\alpha)[/mm] =  1*
[mm]\bruch{\lambda}{d}[/mm] die Richtung zum 1. Minimum.
Für ein Kreisförmige Öffnung statt Spalt bekommt man den Faktor 1,22. Herleitung dazu in vielen Physikbüchern, dauert hier zu lange.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de