www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ökonomische Funktionen" - Ökonomische Funktionen
Ökonomische Funktionen < Ökonomische Funktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ökonomische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ökonomische Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:42 Mo 08.01.2007
Autor: DarkFritz

Aufgabe
Ein Anbieter auf einem monopolistischen Markt hat die PAF
p(x) = -0.1x + 100 und die Kostenfunktion K(x) = 40x + 5000
Berechnen Sie:
a) die Gewinnfunktion des Anbieters
b) die Angebotsmenge mit dem höchsten Erlös
c) die Angebotsmenge mit dem höchsten Gewinn

ich habe folgendes Problem ich weiss nicht genau was dei Angebotsmenge
mit dem höchsten Erlös oder mit dem höchsten Gewinn ist ich denke das es so geht aber sicher bin ich mir nicht und wollte euch fragen ob das Richtig ist.

E(x)=x*p(x)
E(x)= x( -0.1x + 100 )
E(x)= -0.1x hoch 2 + 100x

G(x)= E(x)-K(x)
G(x)= -0.1x hoch 2 + 100x -(40x + 5000)
G(x)= -0.1x hoch 2 + 100x -40x - 5000
G(x)= -0.1x hoch 2 + 60x - 5000
Das Wäre die Gewinnfunktion da bin ich mir auch ziemlich sicher das das
richtig ist

G´(x) = 0 und G´´(x) < 0
G´(x) =  -0.2x + 60
G´´(x) = -0.1

-0.2x + 60 =0
-0.2x = - 60
       x = 300
Ich denke das ist die Angebotsmenge und die muss ich jetzt in G(x) oder
in E(x) einsetzten

G(300) = -0.1 * 300 hoch 2 + 60 * 300 - 5000
G(300) = 4000

E(300)= -0.1* 300 hoch 2 + 100 * 300
E(300)= 21000

Wie gesagt ich bin mir nicht sicher ob das richtig ist
ich hoffe ihr könnt mir helfen
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt


        
Bezug
Ökonomische Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:24 Mo 08.01.2007
Autor: hase-hh

moin,

> Ein Anbieter auf einem monopolistischen Markt hat die PAF
> p(x) = -0.1x + 100 und die Kostenfunktion K(x) = 40x +
> 5000
>  Berechnen Sie:
>  a) die Gewinnfunktion des Anbieters
>  b) die Angebotsmenge mit dem höchsten Erlös
>  c) die Angebotsmenge mit dem höchsten Gewinn
>  ich habe folgendes Problem ich weiss nicht genau was dei
> Angebotsmenge
>  mit dem höchsten Erlös oder mit dem höchsten Gewinn ist
> ich denke das es so geht aber sicher bin ich mir nicht und
> wollte euch fragen ob das Richtig ist.
>  
> E(x)=x*p(x)
>  E(x)= x( -0.1x + 100 )
>  E(x)= -0.1x hoch 2 + 100x

[mm] E(x)=-0,1x^2 [/mm]  +100x

richtig.

die erlösmaximale menge erhältst du, indem du das maximum der erlösfunktion bestimmst.

E'(x) bilden

E'(x)=-0,2x +100

E'(x)=0 setzen und nach x auflösen. ergebnis ist die menge mit dem höchsten erlös.

0=-0,2x +100

0,2x=100

x=500    

bei produktion von x=500 ME  ist der erlös maximal.  (s.u.)

[mm] E(500)=-0,2*500^2 [/mm] +100

E(500)=50100

> G(x)= E(x)-K(x)
>  G(x)= -0.1x hoch 2 + 100x -(40x + 5000)
>  G(x)= -0.1x hoch 2 + 100x -40x - 5000
>  G(x)= -0.1x hoch 2 + 60x - 5000
> Das Wäre die Gewinnfunktion da bin ich mir auch ziemlich
> sicher das das
>  richtig ist

[mm] G(x)=-0,1x^2 [/mm] +60x -5000

die gewinnmaximale menge erhältst du, wenn du das maximum der gewinnfunktion bestimmst.

also G'(x) bilden...
  

> G´(x) = 0 und G´´(x) < 0
>  G´(x) =  -0.2x + 60
>  G´´(x) = -0.1

G'(x)=0 setzen ...  ergebnis ist die Menge mit dem höchsten gewinn (entspricht auch der Cournotschen Menge!)

> -0.2x + 60 =0
>   -0.2x = - 60
>         x = 300

Ja, das ist die gewinnmaximale Angebotsmenge, wobei hier zwischen Angebotsmenge und nachgefragter Menge nicht unterschieden wird. Man theoretisch davon ausgeht, das Angebotsmenge = abgesetzter Menge ist.

>  Ich denke das ist die Angebotsmenge und die muss ich jetzt
> in G(x) oder
>  in E(x) einsetzten
>  
> G(300) = -0.1 * 300 hoch 2 + 60 * 300 - 5000
>  G(300) = 4000

korrekt

> E(300)= -0.1* 300 hoch 2 + 100 * 300
>  E(300)= 21000

das wäre der gewinnmaximale erlös; nicht der erlösmaximale erlös!
  

> Wie gesagt ich bin mir nicht sicher ob das richtig ist
>  ich hoffe ihr könnt mir helfen
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>  

gruß
wolfgang

Bezug
                
Bezug
Ökonomische Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:41 Mo 08.01.2007
Autor: DarkFritz

Danke Für die schnelle Antwort Wolfgang

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ökonomische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de