offene Umgebung von Punkten? < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
 
 
   | 
  
 
  
   
    
     
	   | Status: | 
	   		           				(Frage) beantwortet    |    | Datum: |  22:22 Do 23.01.2014 |    | Autor: |  xxtrixx |   
	   
	  
 | Aufgabe |  |  Sei f: [mm] \IR \to \IR [/mm] stetig und sei f(1) = 3. Zeigen Sie, dass es eine offene Menge U [mm] \subseteq \IR [/mm] mit 1 [mm] \in [/mm] U ("eine offene Umgebung von 1") gibt, sodass für alle u [mm] \in [/mm] U die Ungleichung f(u) > 2 gilt.  |  
  
Hallo liebe Leute,
 
 
ich verstehe die Aufgabenstellung nicht, vielleicht gibt es jemanden, der sie mir irgendwie einfach erklären kann :-/
 
und der in der Lage ist, mich auf den richtigen Weg zu geleiten, die Aufgabe irgendwie alleine zu lösen.
 
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
 
 
      | 
     
    
   | 
  
 |          | 
 
 
   | 
  
 
  
   
    
     
	  
	   Bei x=1 ist der Funktionswert 3. Dass die Funktion stetig ist, bedeutet, dass sie überall definiert ist und keine Sprünge macht. Deshalb muss sie "in der Nähe" von 1 (sprich: einer passenden offenen Umgebung darum) noch Funktionswerte haben, die "in der Nähe" von 3 liegen, also über 2 sind.
 
 
Benutze das [mm] \epsilon [/mm] - [mm] \delta [/mm] -Kriterium für die Stetigkeit und wähle [mm] \epsilon [/mm] = 1/2 (Warum? Tipp: du kannst irgend einen positiven Wert <1 nehmen).
 
 
      | 
     
    
   | 
  
 
 |   
  
   |