www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - optimaler Abschusswinkel
optimaler Abschusswinkel < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

optimaler Abschusswinkel: Gleichung nicht lösbar
Status: (Frage) beantwortet Status 
Datum: 17:54 Sa 03.11.2007
Autor: Hund

Aufgabe
Bei einem Schuss einer Kanonenkugel, die sich im Ursprung der xy-Ebene befindet, mit Anfangsgeschwindigkeit [mm] v_{0} [/mm] bergauf auf einer schiefen Ebene mit Neigungswinke [mm] \alpha [/mm] ist der optimale Abschusswinkel [mm] \gamma [/mm] gesucht, so dass die Reichweite maximal wird.  

Hallo,

also ich habe mir überlegt, die Flugbahn der Kanonenkugel lautet doch:

[mm] r(t)=-1/2(0,g)t²+v_{0}(cos \alpha [/mm] + [mm] \gamma [/mm] , sin [mm] \alpha+ \gamma)t [/mm]

Die Parameterdarstellung der schiefen Ebene als Gerade in der xy-Ebene lautet:
g: r(cos [mm] \alpha [/mm] , sin [mm] \alpha [/mm] ).

Jetzt muss der Schnittpunkt berechnet werden:
[mm] v_{0}cos(a+y)t=rcos(a) [/mm]
[mm] -1/2gt²+v_{0}sin(a+y)t=rsin(a). [/mm]

Damit die Reichweite maximal wird, muss r maximal werden. Wenn ich allerdings r in Abhängigkeit von y berechne und dann die Ableitung nach y 0 setzte, kan ich die Bedingung nicht nach y auflösen. Ich habe den Eindruck, dass es einfacher gehen muss.

Ich hoffe, ihr könnt mir helfen.

Gruß
Hund

        
Bezug
optimaler Abschusswinkel: Antwort
Status: (Antwort) fertig Status 
Datum: 19:45 Sa 03.11.2007
Autor: rainerS

Hallo!

> Bei einem Schuss einer Kanonenkugel, die sich im Ursprung
> der xy-Ebene befindet, mit Anfangsgeschwindigkeit [mm]v_{0}[/mm]
> bergauf auf einer schiefen Ebene mit Neigungswinke [mm]\alpha[/mm]
> ist der optimale Abschusswinkel [mm]\gamma[/mm] gesucht, so dass die
> Reichweite maximal wird.
> Hallo,
>
> also ich habe mir überlegt, die Flugbahn der Kanonenkugel
> lautet doch:
>  
> [mm]r(t)=-1/2(0,g)t²+v_{0}(cos \alpha[/mm] + [mm]\gamma[/mm] , sin [mm]\alpha+ \gamma)t[/mm]
>  
> Die Parameterdarstellung der schiefen Ebene als Gerade in
> der xy-Ebene lautet:
>  g: r(cos [mm]\alpha[/mm] , sin [mm]\alpha[/mm] ).
>  
> Jetzt muss der Schnittpunkt berechnet werden:
>  [mm]v_{0}cos(a+y)t=rcos(a)[/mm]
>  [mm]-1/2gt²+v_{0}sin(a+y)t=rsin(a).[/mm]
>  
> Damit die Reichweite maximal wird, muss r maximal werden.
> Wenn ich allerdings r in Abhängigkeit von y berechne und
> dann die Ableitung nach y 0 setzte, kan ich die Bedingung
> nicht nach y auflösen. Ich habe den Eindruck, dass es
> einfacher gehen muss.

Aus der Aufgabenstellung würde ich [mm]\gamma[/mm] als den Winkel zur Waagrechten statt [mm]\alpha+\gamma[/mm] nehmen.

Das ist aber egal, [mm]\alpha[/mm] ist ja konstant; dann kannst du [mm]\delta:=\alpha+\gamma[/mm] definieren und das Maximum bezüglich Variation von [mm]\delta[/mm] suchen. Damit sollten die Gleichungen einfacher werden.

  Viele Grüße
    Rainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de