www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - orthog. Endomorphismen
orthog. Endomorphismen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

orthog. Endomorphismen: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:51 Mi 23.05.2012
Autor: huzein

Aufgabe
Sei $V$ ein $n$-dimensionaler euklidischer VR, [mm] $\rho\in\operatorname{End}(V)$ [/mm] orthogonal. Zeigen Sie: [mm] $(\operatorname{Eig}(\rho,1)\oplus\operatorname{Eig}(\rho,-1))^{\perp}$ [/mm] hat eine gerade Dimension und ist eine orthogonale Summe zweidimensionaler [mm] $\rho$-invarianter [/mm] Unterräume.

Hallo,

hab obige Aufgabe zu lösen und brauch hier ebenfalls einen Tip. Zunächst mal weiß ich ja dass [mm] $\rho$ [/mm] orthogonal ist. Da $V$ euklidisch ist, sind die EW reell und lauten -1 und 1. Aber damit bin ich auch schon am Ende meines Ansatzes... und hoffe dass mir hier jmd auch eine Starthilfe geben kann...

Gruß

(hab diese Frage in keinem anderen Forum gestellt)

        
Bezug
orthog. Endomorphismen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:08 Mi 23.05.2012
Autor: fred97


> Sei [mm]V[/mm] ein [mm]n[/mm]-dimensionaler euklidischer VR,
> [mm]\rho\in\operatorname{End}(V)[/mm] orthogonal. Zeigen Sie:
> [mm](\operatorname{Eig}(\rho,1)\oplus\operatorname{Eig}(\rho,-1))^{\perp}[/mm]
> hat eine gerade Dimension und ist eine orthogonale Summe
> zweidimensionaler [mm]\rho[/mm]-invarianter Unterräume.
>  Hallo,
>  
> hab obige Aufgabe zu lösen und brauch hier ebenfalls einen
> Tip. Zunächst mal weiß ich ja dass [mm]\rho[/mm] orthogonal ist.
> Da [mm]V[/mm] euklidisch ist, sind die EW reell und lauten -1 und 1.


Nein, das sind mögliche Eigenwerte von [mm] \rho. [/mm]

Ist z.B. [mm] \rho= id_V, [/mm] so ist [mm] Eig(\rho,1)=V [/mm] und [mm] Eig(\rho,-1)= \{0\} [/mm]

Lautet die Aufgabe wirklich so, dass Du diese Dinge für
$ [mm] (\operatorname{Eig}(\rho,1)\oplus\operatorname{Eig}(\rho,-1))^{\perp} [/mm] $ zeigen sollst.

Im Falle [mm] \rho= id_V [/mm] ist nämlich $ [mm] (\operatorname{Eig}(\rho,1)\oplus\operatorname{Eig}(\rho,-1))^{\perp} [/mm] = [mm] \{0\}$ [/mm]

FRED


> Aber damit bin ich auch schon am Ende meines Ansatzes...
> und hoffe dass mir hier jmd auch eine Starthilfe geben
> kann...
>  
> Gruß
>  
> (hab diese Frage in keinem anderen Forum gestellt)


Bezug
                
Bezug
orthog. Endomorphismen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:16 Mi 23.05.2012
Autor: huzein


>
> Nein, das sind mögliche Eigenwerte von [mm]\rho.[/mm]
>  
> Ist z.B. [mm]\rho= id_V,[/mm] so ist [mm]Eig(\rho,1)=V[/mm] und [mm]Eig(\rho,-1)= \{0\}[/mm]
>  

Ja sofort nachdem ich die Anfrage gesendet habe, ist mir das auch in den Sinn gekommen, dass das nur die möglichen EW sind.

> Lautet die Aufgabe wirklich so, dass Du diese Dinge für
> [mm](\operatorname{Eig}(\rho,1)\oplus\operatorname{Eig}(\rho,-1))^{\perp}[/mm]
> zeigen sollst.
>  
> Im Falle [mm]\rho= id_V[/mm] ist nämlich
> [mm](\operatorname{Eig}(\rho,1)\oplus\operatorname{Eig}(\rho,-1))^{\perp} = \{0\}[/mm]
>  
> FRED

Das bereitet mir nämlich auch Kopfschmerzen, denn die Aufgabe lautet wirklich so.  Und angenommen 1 und -1 sind EW, dann hab ich ja mit [mm] v_1,...v_k\in\operatorname{Eig}(\rho,1) [/mm] orthonormale Basisvektoren von [mm] \operatorname{Eig}(\rho,1) [/mm] und mit [mm] w_1,...,w_l\in\operatorname{Eig}(\rho,-1) [/mm] eine ONB von [mm] \operatorname{Eig}(\rho,1), [/mm] und deshalb doch mit [mm] (v_1,...,v_k,w_1,...,w_l) [/mm] (k+l=n) eine ONB von V, denn [mm] v_i\perp w_j [/mm] und innerhalb der Eigenräume ja auch und weil orthog. End. / Matrizen diagonalisierbar sind. Dann wäre doch immer [mm] (\operatorname{Eig}(\rho,1)\oplus\operatorname{Eig}(\rho,-1))^\perp=\{0\}, [/mm] wegen [mm] \operatorname{Eig}(\rho,1)\oplus\operatorname{Eig}(\rho,1)=V, [/mm] oder nicht?


Bezug
                        
Bezug
orthog. Endomorphismen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:45 Do 24.05.2012
Autor: hippias

Vermutlich ist die direkte Summe im Fall [mm] $Eig(\rho,1)\oplus Eig(\rho [/mm] ,-1)= V$ als leer anzusehen.
Ueberlege, Dir, dass $U:= [mm] (Eig(\rho,1)\oplus Eig(\rho ,-1))^{\perp}$ $\rho$-inavariant [/mm] ist. Was wuerde fuer die Eigenwerte von [mm] $\rho|U$ [/mm] folgen, wenn die Dimension ungerade waere? $1$-dimensionale [mm] $\rho$-invariante [/mm] Unterraeume von $U$ kann es also nicht mehr geben, nur noch $2$-dimensionale.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de